基于深度神经网络和支持向量机的抗癌药物反应分类预测

来源 :燕山大学 | 被引量 : 0次 | 上传用户:chjl0620
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
不同患者对同一抗癌药物的反应可能不同,了解患者之间对抗癌药物的反应差异对癌症精准医疗具有重大参考价值。高通量测序数据的不断完善为构建抗癌药物反应分类预测模型,进而挖掘数据背后隐藏的信息提供了良好的数据基础。基于两大经典数据集,癌症细胞百科全书(CCLE)和癌症药物敏感性基因组学(GDSC),本文构建了两种预测癌细胞系对抗癌药物敏感或抑制的二分类模型,为抗癌药物反应预测和生物标志物识别提供了可选择工具。基于最大相关最小冗余算法(mRMR)和深度神经网络(DNN),本文构建了mRMR-DNN模型。首先应用方差排序剔除大量冗余基因,再借助mRMR算法提取500个特征基因,然后利用特征基因的基因表达信息构建伴有动态调节算法(Adagrad)的DNN,通过五折交叉验证方法预测癌细胞系对特定药物的反应分类。实验结果显示:mRMR-DNN在两大经典数据集上的预测结果均优于深度反应森林模型。为进一步评估模型的预测性能,将mRMR-DNN应用于GDSC中敏感性值缺失较多的三种代表药物,对缺失反应标签的细胞系进行分类预测,发现突变型细胞系比野生型细胞系对三种代表药物更敏感,与实验观测的反应分类完全一致,再次说明mRMR-DNN的预测有效性。尽管mRMR-DNN预测性能较高,但其计算复杂度较大。为解决以上问题,本文在上述工作的基础上提出了基于mRMR和支持向量机(SVM)的mRMR-SVM模型,利用相同的特征提取方式,借助SVM预测抗癌药物反应分类。实验结果显示:mRMR-SVM在两大数据集上的预测结果均优于mRMR-DNN。此外,将mRMR-SVM应用于CCLE中包含细胞系较多的三种组织(造血和淋巴组织、肺组织和皮肤组织),预测结果明显优于已有的SVM模型。最后,通过文献检索验证了本文提取的许多特征基因与癌症发生、发展密切相关,再次说明本文提取的特征基因可以作为预测抗癌药物反应的有效因子。
其他文献
现代社会发展越来越迅速,各国在公共安全方面投入的人力物力越来越多。伴随着监控技术的不断发展,许多公共场所都设有监控摄像头,比如公园、学校、医院、超市、车站等。面对复杂的海量的监控视频数据,人工处理效率越来越低,使用计算机处理海量的监控视频变得非常重要。因此,计算机视觉中的行人重识别是一个经典的值得讨论的问题。行人重识别是利用计算机视觉技术,在跨摄像头监控视频中识别并找到需要寻找的特定行人。它对建设
本文提出使用一个非最大任意的五粒子态和一个非最大任意的二粒子态作为量子通道,隐形传送任意的三粒子态的方案。在本方案中发送者要进行三次Bell测量,接收者根据另一个可能接收者的Hadamard操作及测量结果引入辅助粒子并进行幺正变换,则可以概率性的成功实现隐形传送。
近年来,由于计算机技术、控制技术、以及网络技术的发展,使得遥操作技术得到了越来越多的研究者以及社会的注目。由于遥操作系统中加入了公共网络于是出现了“网络化遥操作系统”。但是,网络化遥操作系统中的时延也变得比旧有的遥操作系统更为复杂。而且对于任何遥操作系统来说,时延的存在可能会影响到系统的性能,如果时延过大,则甚至有可能会系统的不稳定。由此可知研究网络化遥操作系统的稳定性具有十分重要的价值。本文主要
异构网络表示学习,是在现实世界各类实体及其复杂关系构成的网络中,学习网络低维稠密独立的向量表示过程;该向量表示解决了大规模网络分析的高维稀疏和可扩展性差等瓶颈问题,成为当前研究热点。现有研究大多是由领域专家事先给出的元路径实现随机游走,然而随着网络节点数量的增加,元路径的选择十分困难且缺乏灵活性。本论文主要对基于随机游走异构网络表示学习进行研究,在考虑了网络的结构信息和语义信息基础上,给出比现有基
随着人工智能和机器人技术的不断提高,面向日常生活的家庭服务机器人也越来越普及,使用自然语言指令提高人机交互体验势在必行。但机器人很难识别并解析人类的自然语言,所以将自然语言指令解析成机器人能够处理的形式完成目标的映射是人机交互最为重要的一环,本课题将围绕此任务展开,并细化为以下几个方面。首先,自然语言指令解析需要进行意图检测和槽填充,为了利用这两者之间的关联性,提出了一个基于Graph LSTM和
蛋白质的空间结构决定着蛋白质的功能,对于推断蛋白质结构之间的进化关系,药物发现和蛋白质设计至关重要。机器学习的进步促进了蛋白质结构预测的发展,使其预测速度由月、天、时提升到了秒、毫秒级单位,而其中代码数量也由百万行减少到几千行。然而,蛋白质结构的预测精度以及稳定性是否符合人们的需求还需要进一步的分析。本文以循环几何网络RGN预测的蛋白质三级结构数据为主要研究对象,从结构比较,可视分析角度以及RGN
随着深度神经网络发展以及大规模数据集的出现,普通图像识别已取得很大成功;然而细粒度图像由于类内差异大、类间相似度高,易受恶劣环境影响,导致其精确识别困难。针对上述问题,提出一种基于双线性的循环注意卷积神经网络(Bilinear Recurrent Attention Convolutional Neural Network,BRAN)细粒度图像识别方法,并应用于海洋细粒度鱼类图像的分类研究中。首先
供暖管道在长期使用中就一直出现热力不均衡问题,在此问题上给居民和供暖工作带来了很多不必要的麻烦。所以,现在主要任务就是先将供暖管道热力不平衡问题处理,给城市居民带来舒适的居住环境。本文主要对供暖管道热力不平衡问题进行研究与分析,并提出主要应对对策。
我们利用两个全同二能级原子与双模真空腔场相互作用并得到了四体近似W态。我们发现不论两原子初始处于Einstein-Podolsky—Rosen纠缠态或者非纠缠态,四体近似W态都能实现。并且四体纠缠随着系统的初始态和失谐量的变化而变化。重要的是,当两原子初始处于Einstein-Podolsky-Rosen纠缠态时,原子-原子,腔场-腔场的纠缠可以达到最大值1.而两原子初始处于非纠缠态时,原子-原子
蛋白质三维结构预测一直是分子生物学的重要课题,传统实验方法非常复杂且耗时较长。随着深度学习的兴起,RGN(Recurrent Geometric Networks)作为一种深度学习模型已成功应用于蛋白质三维结构预测。该模型通过一条氨基酸序列及相关PSSM(Position Specific Scoring Matrix)信息来预测一条序列对应的蛋白质主链三维结构,其预测结果的精度可以媲美目前最优方