论文部分内容阅读
镁基储氢材料具有质量轻、储量大、价格低和储氢密度大等特点,在储氢领域具有较大的优势,然而吸放氢过程中较差的动力学和热力学性能制约了镁基储氢材料的发展。为了改善镁基材料储氢性能,本课题采用液相沉积还原法、水热/溶剂热法、热处理还原法、高能机械球磨等多种制备手段,设计制备了以多种纳米过渡金属(Ni、Co、Cu、Pd、Nb、Zn)和大比表面积材料(MOFs、多孔碳、石墨烯、碳纳米管、乙炔黑)复合的镁基纳米复合储氢材料。采用SEM、TEM、EDS、XRD、XPS、BET、DSC、PCT等测试手段分别对样品的形貌结构、物相变化、吸放氢温度、动力学、热力学和循环性能进行表征,系统地研究微观结构、催化掺杂以及制备工艺对镁基材料储氢性能的影响。首先,采用沉积还原法制备了Mg/MOFs(MOFs=ZIF-8、ZIF-67、MOF-74)纳米复合物。研究发现Mg/ZIF-67的吸放氢动力学性能明显优于Mg/ZIF-8和Mg/MOF-74,Mg/ZIF-67吸放氢过程中形成的Co Mg2相可显著催化提高Mg的储氢动力学和热力学性能,对应MgH2相的脱氢表观活化能值由纯MgH2的204.9 k J/mol H2降至161.7 k J/mol H2。得益于Mg/ZIF-67稳定存在的核壳结构,阻碍了循环吸放氢过程中镁纳米颗粒团聚,经过100次的吸放氢循环后储氢容量几乎没有衰减,显示出了良好的储氢性能。在此基础上,采用一步还原法制备了添加过渡金属的MgTM/ZIF-67(TM=Ni、Cu、Pd、Nb)纳米复合物。其中,复合Ni和Nb的样品分别具有最低的氢化和脱氢温度以及最快的氢化和脱氢速率,氢化/脱氢1 wt.%对应温度分别为80/247℃,比同样方法制备的Mg/ZIF-67低82℃和42℃。进一步对MgNb/ZIF-67研究发现,其主要储氢相为Mg和Co Mg2,而Co Mg2以及其中分布的多价态Nb元素均可催化改善Mg的脱氢动力学和热力学性能,并通过阻碍循环过程中Mg纳米颗粒长大,提高吸放氢循环过程的容量保持率。为了进一步提高储氢性能并改善储氢容量,采用水热法制备出含有不同活性金属位点(Ni、Co、Cu)的MOF-74材料,对得到的MOF材料进行热处理还原,得到的石墨烯(G)负载过渡金属(TM=Ni、Co、Cu)纳米颗粒,简称TM/G,并采用沉积还原法制备了Mg@TM/G纳米复合物。其中的过渡金属分别以Mg2Ni、Co Mg2和Cu Mg2形式存在。综合对比Mg@TM/G发现,Mg@Ni/G样品具有最低的初始吸放氢温度以及最佳的吸放氢动力学和热力学性能,吸放氢1 wt.%对应温度分别为80℃和233℃,对应吸放氢表观活化能分别为29.09 k J/mol H2和65.74 k J/mol H2,吸放氢反应焓值分别为61.0 k J/mol H2和74.4 k J/mol H2。在此基础上引入机械球磨改性得到Mg@TM/G_BM纳米复合物。结果发现,球磨改性通过降低样品中TM/G的团聚,提高其比表面积与催化作用,进一步降低了样品的初始吸放氢温度,样品在室温下即可吸收氢气,在250℃下500 s即可脱氢4.1 wt.%。与单纯沉积法或球磨法制备的样品相比,采用沉积+球磨法制备的Mg@Ni/G_BM样品具有最佳的吸放氢热力学和动力学性能,并保持有良好的循环性能,250℃下100次循环的储氢容量保持率超过97%。分析表明,采用沉积还原法和球磨法可将石墨烯封装的Ni纳米颗粒包入Mg纳米颗粒中并充分分散,在吸放氢过程中,包覆的石墨烯打开释放出的Ni颗粒迅速与Mg反应生成Mg2Ni纳米颗粒。石墨烯的包覆阻碍了制备过程中Ni的团聚,提高了颗粒的分散性与抗氧化性。为进一步确认碳材料和氮元素对储氢材料的作用,采用水热法合成了ZIF-8前驱体,并结合高温热处理和酸处理方法分别得到3种氮掺杂碳纳米颗粒(NC)。采用液相沉积还原法将NC与Mg纳米片复合制备了3种Mg/NC纳米复合物。测试表明,NC的掺杂可显著降低镁纳米颗粒的脱氢温度、表面活化能值和焓值,降低脱氢能垒和热力学稳定性,提高样品整体的脱氢动力学、热力学性能和循环稳定性。且NC中石墨氮占比的增加可使颗粒表面具有较高的电子迁移率,促进了吸放氢过程中H的结合与分解。为了在上述研究的基础上进一步简化工艺、提升储氢容量与稳定性,选用市售石墨烯作为大比表面积材料。采用液相沉积还原法制备了复合过渡金属元素的Mg纳米复合物(MgTM(TM=Ni、Cu、Pd、Nb)),并进一步使用高能球磨将MgTM与单层石墨烯薄片复合,制备出MgTM/G纳米复合物。结果显示,过渡金属元素(Ni、Cu、Pd、Nb)的复合均可提高Mg的氢化和脱氢性能,且采用机械球磨法将MgTM与单层石墨烯复合可协同催化MgH2的脱氢,获得更低的脱氢反应温度。在MgTM和MgTM/G样品中,MgNi和MgNi/G纳米复合物分别表现出最低的氢化/脱氢温度和最快的氢化/脱氢速率,MgNi/G具有最低的脱氢活化能良好的循环稳定性。对于可显著提升镁基材料储氢性能的Ni和Pd元素,进一步采用一步还原法制备出Ni和Pd复合Mg纳米颗粒的MgNi Pd复合材料,并结合原位生成和机械球磨等方法分别与低维碳纳米材料(单层石墨烯、单壁碳纳米管、乙炔黑)复合,制备得到MgNi Pd+G/CNTs/AC纳米复合物。实验结果发现,MgNi Pd在255℃下可脱氢4 wt.%,对应脱氢活化能值为124.15 k J/mol H2,均优于所制备的二元合金。然后采用球磨法复合MgNi Pd与碳纳米管制备的MgNi Pd+CNTs BM样品在9种MgNi Pd C复合物中具有最低的脱氢温度,且脱氢活化能值仅为52.44 k J/mol H2,具有优异的脱氢动力学性能和循环性能。