论文部分内容阅读
永磁同步电机因其高功率密度、高效率、功率因数可调等优点而受到广泛关注。内嵌式正弦波永磁同步电机也是其中一员。与其他类型的永磁电机相比较,内嵌式正弦波永磁同步电机由于将永磁体嵌入到转子铁芯内部,因此结构更紧凑、极弧系数易于实现控制,每极能够提供更大磁通。机械装备加工行业的共同特点是需要高性能的伺服控制系统及高性能电机。本文以机械装备加工行业用内嵌式正弦波永磁同步电机为研究对象,全面阐述了内嵌式正弦波永磁同步电机电磁计算及电机设计、优化设计的全过程。首先提出了一种考虑定转子开槽及充分考虑电机内部漏磁的改进型等效磁路模型。气隙磁密值的精确估算及电机基本电磁参数设计的合理性是进行电机优化设计的基础。该等效磁路模型的改进之处一是考虑了定转子槽对磁路的影响,二是详细分析了由永磁体在转子铁芯内部的位置不同所导致的永磁体端部漏磁及极间漏磁。同时考虑由于磁场分布变化及饱和对磁路计算的影响,采用场路结合法对相关参数进行修正。之后通过改进型等效磁路法编写电机电磁计算程序,计算结果与有限元分析结果相比较验证了该等效磁路的正确性,为电机优化设计基本电磁参数的获取打下基础。提出将提高产品品质的稳健设计方法Taguchi方法应用到电机参数优化设计当中。Taguchi方法是一种局部优化设计方法,与传统的局部优化设计方法相比,能够实现多目标优化、获取多参数优化的最佳组合。首先建立实验正交矩阵,通过有限元方法求解该矩阵,并采用统计等数学手段分析所有设计参数对单一目标或多目标优化的最佳组合。通过改进型等效磁路法确定基本的电机电磁参数,选取齿槽转矩最小及最大平均转矩最大为优化目标,研制一台纺织机用20kW内嵌式正弦波永磁同步电机样机。样机及数据测试结果显示了该方法的有效性。全局优化设计是电机优化设计的一种发展趋势。遗传算法由于其内在的并行搜索机制及易于编程实现等优点,在电机优化设计中的应用也日趋广泛。详细分析了遗传算法具体的实现步骤及各类改进措施,选择改进型自适应遗传算法和小生境遗传算法并将其应用到内嵌式正弦波永磁同步电机优化设计当中,着重分析了增广目标函数的获取及适应度值的程序求解法。遗传算法能够逼近最优值,尽管各类改进型遗传算法能跳出局部最优解,但运算时间及迭代代数会增加。而Taguchi方法的优势在于用最少的试验次数获取函数值并借助于信噪比的分析可获得各参数的最佳组合。提出了一类新型混合型遗传算法,将局部优化设计方法与全局优化设计方法结合起来。该方法将Taguchi方法嵌入到遗传算法的交叉运算之后,借助于Taguchi方法的优势,能产生性能更优的个体,这样能保证遗传算法的进化方向而跳出局部最优解,同时缩短了选优的时间和迭代代数。选取效率作为优化目标,研制一台锻压机用30kW内嵌式正弦波永磁同步电机样机。样机及性能测试数据验证了该方法的有效性。