【摘 要】
:
柔性传感器具有良好的柔韧性,可以集成在各种可穿戴产品中进行信号采集,从而在生物医学工程和健康监测等方面发挥重要的作用。传统的软光刻制造存在着工艺设备昂贵、工艺流程复杂、生产成本较高等问题。3D打印技术有望解决柔性传感器制造的问题。本文面向3D打印压敏材料制造柔性压力传感器,进行了如下研究:1、以碳纳米管(MWCNTs)、石墨(EG)、碳球(MCMB)为导电填料,以聚氨酯(TPU)为基体,通过熔融共
论文部分内容阅读
柔性传感器具有良好的柔韧性,可以集成在各种可穿戴产品中进行信号采集,从而在生物医学工程和健康监测等方面发挥重要的作用。传统的软光刻制造存在着工艺设备昂贵、工艺流程复杂、生产成本较高等问题。3D打印技术有望解决柔性传感器制造的问题。本文面向3D打印压敏材料制造柔性压力传感器,进行了如下研究:1、以碳纳米管(MWCNTs)、石墨(EG)、碳球(MCMB)为导电填料,以聚氨酯(TPU)为基体,通过熔融共混法制备了MWCNTs/EG/MCMB/TPU柔性3D打印压敏材料。进行了熔体流速分析、力学性能分析、电学性能分析,发现随着碳导电填料添加比例的增加,材料的熔体流速下降、力学性能下降、导电性能提高。正交试验结果表明,EG与MCMB对材料性能的影响程度相当,说明导电填料的形貌对于材料性能的影响不大,原因是在熔融状态下TPU对碳填料进行了包裹。相比之下,均匀分布的MW CNTs显示出较强的尺寸效应,对复合材料的熔体流速、力学性能和导电性均产生了较大的影响。2、针对MWCNTs/EG/MCMB/TPU柔性3D打印压敏材料进行了压阻测试,区分了实验测试中的体积压阻与界面压阻效应,分析碳填料对压阻性能的影响,并进行了多次循环加载压阻性能测试。结果显示,制备的柔性3D打印压敏材料压阻性能具有良好的重复性。随着碳导电填料添加比例的增加,材料的体积压阻灵敏度与界面压阻灵敏度逐渐下降。且材料的界面压阻灵敏度大于体积压阻灵敏度,更适合用来设计灵敏度较高的传感器。综合考虑压敏特性和3D打印工艺要求,得到导电填料的最佳质量分数MWCNTs为5%,EG为10%,MCMB为10%。3、考虑导电粒子在有限空间中随机分布,利用蒙特卡罗方法进行导电复合材料的模拟仿真,建立导电复合材料的三维模型。结果表明,导电粒子之间的最小间距服从正态分布。在相同体积添加量下,MWCNTs的加入可使导电粒子的间距迅速减小,对复合材料的电阻率影响最大,显示了MWCNTs的尺寸效应。而体积较大的EG与MCMB对于导电粒子间距影响不大,对复合材料的电阻率影响也不明显。4、设计并借助3D打印制造了一种柔性压力传感器,进而制作了由多个传感器单元组成的传感器阵列,并对其传感性能进行了分析。实验结果显示,柔性压力传感器响应灵敏度为0.07?/k Pa,加载响应时间为0.2s,卸载响应时间为0.2 s。在长时间的循环压力加载下,依然能够保持良好的传感特性。阵列型柔性压力分布传感器不仅能够检测压力分布的能力,还能显示加载物体的位置、形状与作用时间长短等信息。
其他文献
传承红色传统、红色基因离不开红色资源的发扬和承载,爱国主义教育基地作为一种宝贵的红色资源,在传承红色基因中发挥着重要作用,所以传承红色基因需要我们突出爱国主义教育基地的重要作用。通过逻辑关系、现实意义、实践路向三个维度揭示爱国主义教育基地与传承红色基因的紧密关系,在弘扬红色文化、加强党史学习教育、弘扬伟大建党精神的现实观照下,为进一步传承好红色基因提供新思路、新策略,旨在最大程度发挥红色资源的育人
情绪调节是一种试图影响自己或他人的情绪,改变情绪体验的强度和对情绪信息关注度的行为。情绪重评策略被认为是最有效但也是最复杂的情绪调节形式之一。探索情绪重评任务下大脑皮层源活动,有利于了解情绪调节的认知机制,为临床情绪调节障碍研究提供新思路。脑电图(electroencephalography,EEG)和功能磁共振成像(functional magnetic resonance imaging,fM
本课题通过聚乙二醇4000(PEG4000)与环氧树脂E51合成金属表面改性剂PEG-EP树脂(PEG-EP),利用环氧值、红外光谱(FT-IR)来探究合成PEG-EP树脂的最佳反应条件,利用差示扫描量热仪(DSC)、万能试验机及旋转流变仪等测试方法分析PEG-EP对聚甲醛(POM)结晶性能、力学性能与粘度的影响。通过合成得到的金属表面改性剂PEG-EP表面处理316L不锈钢粉末(316L),运用
高铝锌合金由于具有优良的机械性能、摩擦特性和工艺性以及比重小、耗能低和无污染等优点,有着广泛的应用。但是,株洲冶炼集团现有ZX09锌合金的抗蠕变性能较差、因铜含量较高而导致生产成本较高,为此采用合金化提高锌合金抗蠕变性能与降低铜含量。本文在株洲冶炼集团ZX09锌合金化学成分与力学性能的基础上对ZA12锌合金进行Si和Si+Ti合金化处理,在确定最佳Si和Ti含量基础上,优化Cu含量,最终得到一种低
随着新科技的进步,工业领域发展突飞猛进,其中铜及其合金材料成为当下的重要材料。具有高强度、高导电等优异性能的Cu-Cr-Zr合金成为了应用领域的研究热点,但Cu-Cr-Zr合金存在着导电性能不足难以满足实际工业应用的弊端。因此,在有色金属材料领域,对于解决Cu-Cr-Zr合金的高强度与高导电的失衡已成为亟待突破的关键问题。以Cu-1.0Cr-0.1Zr(wt.%)合金材料为研究对象,本文提出了(1
通过Pickering反相细乳液可以完成纳米材料的自组装。研究改性氧化锌(ZnO)、氧化镉(CdO)和氧化铜(CuO)结晶纳米颗粒为固体稳定剂,以Pickering反相细乳液自组装方式制备了有机-无机杂化纳米体或无机-无机杂化氧化物纳米晶形成的不同结构纳米球。主要内容如下:首先采用溶胶凝胶法合成纳米ZnO晶体,水热法和煅烧法合成纳米CdO晶体,沉淀法和煅烧法合成纳米CuO晶体;并用3-(甲基丙烯酰
催化烟气脱硫塔在烟气脱硫过程中存在严重的腐蚀,因此开发新的防腐涂层来提高脱硫塔的使用寿命是当前迫切需要解决的工程问题。非晶合金以其独特的结构在各种腐蚀环境中具有良好的耐蚀性;石墨烯作为一种纳米的片状材料,具有良好的抗渗性和憎水性,能提高的涂层的耐蚀性能;有机涂层作为一种最经济有效的腐蚀防护方法已经被广泛应于各种腐蚀环境中。因此,本文提出了将非晶(石墨烯)添加到有机涂层中来提高催化烟气脱硫塔耐蚀性的
在实际的工程应用中,2xxx(Al-Cu-Mg)系铝合金由于其具有较低的密度、高强度以及优良的加工成型性和耐热性等特点而被广泛使用,尤其在航空航天、交通运输、军工设备等领域。目前,航空航天、交通运输等领域高速发展,对2xxx系铝合金综合性能方面提出了更高要求,就如何提高Al-Cu-Mg合金强度的同时还能保持较好的塑性方面的研究成为一个热点。本文以2024铝合金棒材为研究对象,通过硬度测试、拉伸测试
时效硬化型Al-Mg-Si-Cu铝合金具有高比强度,良好的成型性、焊接性及耐蚀性,在航空航天及车辆制造领域得到广泛应用。为了改善合金强度,通常采用提高Cu含量的方法,但Cu含量的提高会导致合金晶间腐蚀敏感性升高,且不易消除。因此,为了获得高强、高韧、耐蚀的合金,本文以低Cu含量的合金为实验材料,具体成分为:Al-0.93 Mg-1.1Si-0.34 Cu-0.2 Mn-0.05 Zr,研究形变时效
随着国家越来越重视低碳生活的可持续发展,因此有洁净能源之称的液化天然气(Liquefied Natural Gas,LNG)高速发展,需求量也随之攀升,因此用于储存运输液化天然气的LNG大型储罐的需求量也越来越多。在制造大型储罐时,最重要也最困难的则是大型封头的成形加工。在制造传统储罐封头时,需要不断地通过实验和经验摸索,以获得相对合适的生产工艺。这不仅耗时耗力,而且得到的工艺参数也不一定稳定。因