论文部分内容阅读
随着汽车的高速普及和集成技术的发展,汽车的NVH(Noise,Vibrtation,Harshness)特性要求不断提高,这对影响车辆行驶安全性和乘坐舒适性的悬架设计提出了技术挑战。基于磁流变减振器的半主动悬架以其控制效果接近主动悬架,而成本、功耗、结构复杂性、可靠性等优于主动悬架等特点,逐渐成为现代汽车悬架系统的最佳解决方案。然而,基于磁流变减振器的半主动悬架系统存在机、电、液、磁、热等多作用物理过程,使得其设计、分析与控制非常复杂,仍然需要深入开展理论与应用研究。为此,本文以磁流变流体半主动减振器为对象,开展多场耦合分析及控制研究,为车辆行驶安全及乘坐舒适性提供理论基础。本文通过对磁流变流体在两平板间运动工作模式的研究,导出了磁流变流体在多种运动模式下的的流变学方程,结合MRD工作缸内部的工作模式,完成了MRD阻尼力大小的计算方法。通过此方法进行计算,结合本项目要求,设计了磁流变流体减振器的初始结构、电磁线圈匝数、阻尼力范围的选择以及磁路等参数,利用这些参数设计出磁流变流体减振器。利用ADINA软件的结构模块,建立磁流变流体减振器的结构力学模型和流体力学模型。通过在ADINA前处理模块中分别对磁流变减振器的固体结构、流体结构和磁场结构进行各种边界条件的设置,再利用ADINA流固耦合、磁固耦合计算求解器进行求解,在ADINA后处理模块中得到磁流变流体减振器的固体结构动力学特性、磁流变流体减振器的流场特性、磁场分布图、磁流变流体减振器的速度特性曲线以及磁流变流体减振器的示功特性曲线。根据计算机仿真分析结果,提取磁流变流体减振器参数,对磁流变流体减振器进行样件开发。并对完成的磁流变流体减振器进行台架试验,得到磁流变流体减振器不同电流强度下的速度特性和示功特性。根据磁流变流体减振器的工作原理,对其在无电流和通电状态下的速度特性以及示功特性进行分析,并将有限元仿真结果与其进行对比分析。本文提出一种基于物理建模和快速控制原型相综合的磁流变减振器半主动悬架控制系统设计方法。首先采用四分之一车辆悬架归约模型,提出悬架控制算法的评价指标;而后为实现控制系统的高效不间断设计,提出一个融基于物理的模型、控制算法研究、仿真、软件及硬件协同设计的研究框架,即基于AMEsim、Matlab等进行工具链开发的快速控制原型,并对SH控制器、ADD控制器、SH-ADD混合控制器进行仿真分析,并根据悬架控制算法的评价指标对控制器进行了综合评价。为开展四分之一车辆悬架半主动控制测试,提出了控制系统软硬件设计解决方案。根据四分之一车辆悬架半主动控制测试试验台需求,完成了控制系统软硬件设计。