论文部分内容阅读
近年来,宽禁带半导体材料ZnO的研究已经引起人们广泛的关注。ZnO是一种Ⅱ-Ⅵ族化合物半导体材料,具有直接宽带隙(室温下3.37eV),属于六方纤锌矿结构。由于ZnO具有较高的激子结合能(室温下为60meV),远大于室温热能(26meV),因而理论上会在室温下获得高效的紫外激子发光和激光。此外ZnO具有高熔点(1975℃),高热稳定性及化学稳定性;ZnO单晶薄膜可以在低于500℃的生长温度下获得,比GaN等其他宽禁带半导体材料的制备温度低很多,因此可以大大减少高温制备所产生的缺陷。另外,ZnO原材料资源丰富、价格低廉,对环境无毒无害,制备工艺简单,具有潜在的巨大商用价值。作为短波长发光器件、低阈值紫外激光器的一种全新的候选材料,ZnO已经成为当今半导体发光材料与器件研究中新的热点。 为了实现ZnO在发光器件领域的实际应用,必须外延生长晶体质量良好的p型以及n型薄膜,在此基础上,制备ZnO的同质pn结,进而通过掺入Cd、Mg调节ZnO禁带宽度,最终实现ZnO的量子阱和超晶格结构。ZnO中本征施主缺陷(Zn_i和V_o)的形成能很低,因此在实现ZnO的p型转变过程中,存在本征缺陷的严重补偿现象,同时,VA族和IA族元素尽管在理论上可以在ZnO中形成浅的受主能级,但是VA族元素中的N元素在ZnO中的固溶度低,其他的P、As、Sb原子半径大,引起大的晶格畸变和内应力;而IA族元素则很容易形成间隙态起施主作用。施主(Al)-受主(N)共掺杂方法实现ZnO良好的p型特性是近年来由我们浙江大学硅材料国家重点实验室叶志镇教授领导的课题组首先尝试并实现的。共掺杂方法可以一定的条件下提高受主杂质的浓度,从而有利于得到高空穴浓度的p型ZnO薄膜。 本文以利用Al-N共掺杂方法实现良好的p-ZnO薄膜作为研究的基础,以ZnO的p型掺杂机理为主要研究内容。深入分析了择优取向的ZnO多晶薄膜的生长机理,比较了多种常用的受主杂质在实现p型ZnO方面掺杂机理的异同,并对影响ZnO的p型特性的几个关键因素的作用机理作了深入研究。在实现ZnO的p型转变并深入分析其掺杂机理基础上,我们制备并研究了ZnO与Si的异质结及其接触特性,制备了ZnO的同质结、ZnO/ZnCdO异质结以及ZnO/Au的肖特基二极管的原型器件,并对其性能作了基础性研究。 C轴择优取向的ZnO薄膜的生长是一种自组装生长过程,在多种衬底上均