论文部分内容阅读
本文对赤泥的利用划分为三个方面:一是不脱碱赤泥的直接利用;二是高碱赤泥中碱的无害化处理再利用;三是钠离子的脱除后对赤泥进行利用。并针对以上三个方面的划分进行了实验研究。本文利用多学科交叉处理赤泥的优势,研究利用拜尔法高铁赤泥磁选后含有的Fe2O3,通过掺杂烧结工艺制备出具有红外发射率在0.9以上的粉体物料。并得出了通过联合磁选工艺:弱磁后的赤泥再进入强磁选,在不磨矿的情况下可得到品位为47.29%、回收率为20.09%的铁精粉;若磨矿后可得到品位为51.32%、回收率为22.56%的铁精粉。本文制备了赤泥橡胶复合材料,并研究了材料的有关性能,发现,1)高碱赤泥能加快硫化、缩短硫化时间,具有显著的早强性能;2)在腐蚀性实验中,赤泥橡胶复合材料的重量变化率为-0.4%,远低于国家规定-2%的耐腐蚀标准;3)在橡胶充填中,赤泥的掺加量在30份(橡胶标准)是比较合适的。赤泥作为填料的劣势为,1)赤泥比重比较大,作为填料的无机矿物以体积充填率为准,固赤泥作为充填料在比重方面的劣势比较明显;2)赤泥颜色的问题比较突出,影响赤泥橡胶复合材料的美观度。本文制备了赤泥硅酸盐水泥无机材料,并研究了赤泥硅酸盐水泥无机材料返碱、泛霜的机理;发现材料返碱、泛霜的机理主要由两部分组成:一是硅酸盐水泥的主要成分是硅酸钙CaSiO3,在水化条件下,熟料会生成大量的Ca(OH)2、C3S、C2S,水化生成C-S-H凝胶体系的同时大量的游离Ca2+在水中游离与赤泥中的Na+发生取代反应,生成的NaOH在硅酸盐砂浆中破坏了水泥中钙碱与骨料的反应活性,并在一定的环境中与骨料SiO2发生化学反应造成赤泥硅酸盐水泥无机材料破坏受损;反应生成胶凝体会吸收环境中的水分而发生局部膨胀;产生破坏应力,破坏赤泥硅酸盐水泥无机材料的结合度进而产生裂纹,造成硅酸盐水泥赤泥无机材料的损坏。主要反应方程式为:CaO+H2O→Ca(OH)2Ca(OH)2+SiO2+H2O→C-S-HCa(OH)2+NanC2S→C-S-H+NaOH2NaOH+SiO2→Na2SiO3+H2O二是赤泥中的钠碱或盐属于离子型化合物,非常容易电离,具有很强的游离性能,很难被固化住;在潮湿的环境中会电解于水分中,Na+离子电离产生的氢氧根离子与氧化物形成胶体,向外渗透,造成赤泥硅酸盐水泥复合材的表面返碱、泛霜;主要发生的反应为:MgSiO3+2NaOH→Mg(OH)2+Na2SiO3CaSiO3+2NaOH→Ca(OH)2+Na2SiO3Na2CO3+Ca(OH)2→2NaOH+CaCO3赤泥硅酸盐水泥无机材料中的Na+碱随水迁移到材料表面的动力主要是属于毛细现象,毛细迁移高度由动力学公式H=2fcosθ/(p.r)为依据;由EDS分析明确确定了,在赤泥硅酸盐水泥无机材料内部的钠盐组分明显的聚集倍增,由无机材料中钠盐的平均含量4.5%左右增加到10.28%;造成赤泥硅酸盐水泥无机材料返碱、泛霜的严重性。依据赤泥硅酸盐水泥无机材料返碱、泛霜的机理分析,本文使用非硅酸盐类水泥作为粘结剂研究了赤泥制品的返碱、泛霜的机理;发现使用早强水泥能够把赤泥中的碱进行固化,反应方程式为:NaOH+MgO+H2O→Mg(OH)2+NaOH5Mg(OH)2+MgCl2+13H2O→Mg3(OH)5(H2O)m3++5Mg(OH).MgCl2.8H2OMg3(OH)5(H2O)m3+Na2SiO3+NaOH→Na2Mg4SiO6(OH)2早强水泥赤泥无机材料未出现返碱现象的主要机理为:1)固化的过程主要是镁盐的羟根与钠碱发生络合反应固结;2)早强水泥由于固化时间短,能够迅速的将浆体的流动性固结下来,降低了浆体的流动性能;硬化时间短,能够迅速的把浆体中的有害物质固结住降低其流动性能。由早强水泥赤泥无机材料的EDS分析可以很明确的得出,在早强水泥的物相中钠碱的含量为4.51%,与无机材料中加入赤泥带入钠碱的平均含量基本相同,没有发生钠碱聚集倍增的现象,赤泥中的钠碱没有发生任何的游离聚集改变,也就是钠碱在早强水泥中稳定的固化下来。依据早强水泥的固碱的机理,建立了一条早强水泥赤泥板材中试生产线。拜尔法赤泥作为建材使用,其中高含量的钠碱是最大的危害;本文对赤泥脱碱药剂的种类进行了筛选,在四种脱钠药剂的对比试验中得出:以混合盐对赤泥的脱钠效率是最高的,主要是由于混合盐既具有镁盐的阳离子取代性能,又具有铵盐类的水解电解质分解赤泥组分的性能,能够迅速的打破赤泥浆体的电位平衡,加大脱钠效率。研究发现脱钠时间不是脱钠效率的主要影响因素;加热温度、浆体PH值对脱钠效率的影响较大。并对脱钠赤泥进行了硅酸盐返碱、泛霜的检测试验,发现随着脱碱赤泥中水泥含量的增加,试样的表面发出现返碱、泛霜现象,属于轻微返碱;说明脱碱药剂对赤泥中的碱进行部分的脱除,剩余的钠碱性质趋于稳定,对硅酸盐水泥复合材的影响减小了。