哈密顿系统双曲无扭转环面的保持性

来源 :东南大学 | 被引量 : 0次 | 上传用户:puccacat
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文考虑哈密顿系统双曲无扭转环面的保持性问题.哈密顿函数为H通过引进外部参数,线性化,KAM迭代等思想方法,证明了如果频率映射在某个丢番频率处有非零拓扑度,则以这个丢番频率为切向频率的低维双曲不变环面在小扰动下保持下来.
其他文献
神经振子集群同步振荡现象是神经信息处理的基本机制。基于神经元集群的振荡性同步放电行为,使用全局耦合相位振子网络模型来研究神经系统的同步动力学行为是一种简单且有效的
组合数学研究领域中,图论是其中的一个重要分支,它以图为研究对象,不仅可以解决运筹学、几何和优化等领域中的各类问题,而且它的一系列研究成果也普遍地应用于信息技术、社会科学
复杂网络是一门新兴学科,在最近的几十年中得到了迅速发展。复杂网络可以用来描述实际生活中的许多复杂系统,从而对复杂系统遇到的问题进行理论研究。网络上的疾病传播是复杂网
据2006年的统计数据,重庆市的房屋建筑面积已达3.38亿平方米(不包括农村居民自建房),但由于受认识、机制、体制、经济发展水平等诸多方面的影响,95%以上的既有建筑未进行节能设
本文主要利用变分理论中的谱分解定理、环绕定理、广义山路引理等,在一定条件下讨论了二阶哈密顿系统的周期解及同宿轨的存在性和多解性。文章主要分三部分:第一部分是绪论:第二
在智能监控领域中,遗弃物检测技术对于保护人类生命财产、维护社会秩序产生重要影响。在实时环境中进行遗弃物检测,是当今国内外学者研究的热点问题。本文对遗弃物检测中的各种
本文以信息熵理论为基础对中小企业融资中的保费定价问题进行了研究,并给出了相应的计算模型和方法。   首先,简要介绍了中小企业融资研究的主要问题,并对精算学及保费定价原
在实际工作中发现,有些样本取对数后服从Poisson分布,针对这样的实际问题,深入地研究了对数Poisson分布,取得的主要结果可概括如下:   第一章,首先介绍了古典概率的发展史以及Po
当今是一个信息化的时代,媒体的传播越来越快,对传染病防治的影响也越来越大,非常有必要建立一些与媒体报道有关的数学模型,并且对其进行深入的研究。本文在前人工作的基础上,利用
孤子理论在自然科学的各个领域里扮演着非常重要的角色。孤子理论一方面在量子理论、粒子物理、凝聚态物理、流体物理、等离子体物理和非线性光学等各个分支及数学、生物学、