【摘 要】
:
在信息时代,虽然人们可以共享资源开拓视野,但是海量信息也会让用户花费更多时间代价寻找满足自己需求的信息。正是为了解决用户选择困难的问题,个性化推荐才受到了广泛的关注。个性化推荐通过分析用户行为数据,标记用户的个性化偏好,向用户推送其可能感兴趣的信息。目前,个性化推荐面临的主要问题是数据稀疏,通过用户和项目额外的辅助信息来探索用户的兴趣模式是有效的解决方法之一。近年来,图卷积网络在图数据方面表现出强
论文部分内容阅读
在信息时代,虽然人们可以共享资源开拓视野,但是海量信息也会让用户花费更多时间代价寻找满足自己需求的信息。正是为了解决用户选择困难的问题,个性化推荐才受到了广泛的关注。个性化推荐通过分析用户行为数据,标记用户的个性化偏好,向用户推送其可能感兴趣的信息。目前,个性化推荐面临的主要问题是数据稀疏,通过用户和项目额外的辅助信息来探索用户的兴趣模式是有效的解决方法之一。近年来,图卷积网络在图数据方面表现出强大的学习能力,在推荐系统中得到了广泛的应用。本文主要利用图卷积网络分析辅助信息来提升个性化推荐的准确率,本文的主要研究内容如下:1、为了准确地探索用户的偏好模式,本文提出了一个基于关系重构的图卷积矩阵补全(RE-GCMC)方法。首先利用相似性度量函数根据用户个人信息、项目属性以及历史交互数据构建用户-用户,项目-项目相似关系图,并利用注意力图卷积网络从多种关系图中挖掘用户与项目之间的非线性关系并捕获不同邻域的高阶语义信息,学习带有结构信息和内容信息的用户/项目的潜在特征表示;其次利用多层感知机融合特征信息,探索用户与项目的高阶特征交互来完善用户和项目的特征表示从而预测用户对未交互过的项目的评分。最后,在推荐数据集上的实验验证了本文提出的方法优于基准方法。2、为了解决从评论信息中挖掘用户与项目的高阶交互关系的问题,本文提出了一种联合评分和评论的图卷积网络(RRGCN)方法。首先利用词嵌入技术将评论映射到词向量空间,再利用CNNs学习评论文本中带有语义和上下文信息的特征向量;其次利用注意力机制为评论分配不同的权重来初始化用户和项目的特征表示,并利用图卷积网络从用户和项目的交互关系图中捕获高阶协同信息来完善特征表示,从而预测用户对项目的评分。最后,在推荐数据集上的实验结果验证了本文提出的模型有优越的性能。
其他文献
近年来,百姓的日常生活越来越依赖于网上购物,人们在线上平台进行采购的种类和频率都有所提高,受此影响,生鲜电商也进入了快速发展时期。随着人们对于线上平台采购生鲜产品的需求越来越大,国家相关部门也出台了许多政策用以支持和引导生鲜冷链物流的健康、快速发展,但生鲜电商企业在发展过程中依旧存在着诸如企业盈利困难、物流过程中生鲜产品损耗率大、配送成本高等的问题。这些问题很大程度上制约着生鲜电商企业的可持续发展
制造企业间的竞争不仅是产品的竞争,也是物流服务的竞争。随着信息时代的发展,消费者对企业物流服务要求越来越高,物流服务逐渐成为了制造企业提高市场竞争力的有力工具。在市场物流服务需求不断变化的背景下,制造企业需持续进行物流服务创新,通过创新进行服务优化、升级,提高自身物流服务质量与水平,维持竞争优势。然而,制造企业开展物流服务创新会受到物流知识水平、企业创新重视程度、政府政策等多方因素的影响。由于各制
随着电子产品的不断推陈出新,生活中的“电子垃圾”也在不断增多,造成的环境污染问题不容忽视。这引起了政府、企业及消费者对社会可持续发展的高度重视,使得以旧换新的呼声渐高。企业开展以旧换新业务不仅能够节约资源、保护环境,还能鼓励消费者需求。例如,在2018年4月,苹果公司主动推出了Apple Giveback回馈计划。但开展以旧换新还有许多问题亟待解决。比如,企业如何选择市场策略,哪些因素又对企业利润
随着国家及社会经济的飞速增长,物流产业得到了高速发展。研究物流车辆路径规划可以提高物流产业的发展质量。如今,物联网、云计算、北斗导航等技术在生产生活中大量普及,这使得在车辆路径优化时有能力考虑更多的实时信息,而物流产业的众多新业态也需要在车辆路径优化时考虑实时信息。研究考虑多种动态要素的动态车辆路径问题,对于降低物流成本、提高顾客满意度,进而提高整个物流系统的稳定性具有重要意义。在传统静态车辆路径
比特币的问世使区块链受到了广泛关注,其去中心化与不可篡改的特性有助于多方数据共享与价值流通,被视作构建大规模信任互联网的支撑技术,从而吸引了众多业务领域的企业组织发掘其落地的应用方式,大量Dapp蓬勃发展。但是目前最大的区块链基础设施比特币及以太坊存在着性能瓶颈,难以满足大规模互联网应用的需求。因此可扩展性一直是区块链领域的研究热点。国内外研究者针对该问题提出了许多解决方案,从最初的放宽比特币参数
智能电网在能源生产和分配方面具有相当大的灵活性,为了满足这种灵活性,电网必须更加精确地预测供求变化,在聚合级别以及单个组件级别下实时做出智能控制决策,有效地分配来自各种能源的发电量。然而,伴随着智能电网的发展,智能电网下的数据呈现指数级增长,可以预见未来电网云端难以高效实时处理如此大规模的数据,造成对电力的精准预测难以满足实时性要求。为了解决上述问题,本文提出面向边缘智能的超短期负荷预测方案,将智
近年来,随着互联网的蓬勃发展和社交媒体的大量出现,创建了大批的用户生成内容。用户生成内容在情绪识别方面可以应用于信息咨询、舆论挖掘和维持社交关系等领域,那如何从用户生成内容中挖掘其有效的情绪信息,为高级人工智能的活跃发展助力,成为了一个比较热门的研究方向。基于此,基于对话的情绪识别也受到了越来越多学者的广泛关注。目前,基于深度学习的情绪识别方法取得了较好的研究成果,而引入自注意力机制可以进一步提升
多视图新闻数据聚类分析可以快速从海量新闻中获得有价值的信息,在舆情分析、个性化新闻推荐、情感分析、预警等领域能够得到较好的应用效果。当前的多视图新闻数据聚类分析存在以下几个问题:(1)新闻内容中的文本、图片和音视频等多媒体信息是由不同语义层次、不同粒度的内容概念进行描述的,若直接将各视图一视同仁地进行学习,将严重影响数据挖掘性能。(2)到目前为止,大多数方法都是在假设各视图是完备的基础上进行实验的
随着“一带一路”的建设,我国与欧洲及沿线国家的经贸往来发展迅速,对于物流的需求旺盛,贸易通道和贸易方式也在不断地丰富和完善,为中欧班列发展创造了良好的发展机遇,也对中欧班列的发展提出了更高的要求。但是也应该看到,中欧班列的发展仍处于初期,各地区都存在恶性竞争、货源同质、线路重复、地方保护主义严重等问题,这些问题限制了中欧班列运行效率,阻碍了中国“一带一路”建设的进程。因此,在中欧班列发展中实现各区
汽车智能辅助驾驶技术是改善现有交通问题的关键技术之一,环境感知模块负责为辅助驾驶系统的提供道路信息。车道线检测技术是感知道路车道线信息的主要手段,对道路识别、路径规划及规范驾驶等关键技术具有重要意义。随着汽车智能辅助驾驶技术研究的深入以及逐渐产品化,该技术与其他前沿技术的结合应用也成为当下汽车产业技术研究的热点。车道线检测的要求也随之变化,对车道线检测数量、贴合程度以及鲁棒性有了更高的要求。本文围