论文部分内容阅读
随着汽车、航空航天、大型船舶等领域对机械零部件耐高温、抗重载、长寿命周期等性能的要求的不断提高,科研人员将如何提升合成润滑油使役性能作为机械系统润滑剂的突破方向,以期实现在苛刻工况下的高可靠性、高效率润滑。其中,合成润滑油抗氧化添加剂开发及合成润滑油抗氧化性能研究是重点工作,意义重大。本文以国家重点基础研究发展计划课题“润滑添加剂的减摩抗氧化特性及其对合成润滑油使役行为的作用规律”为依托,以三羟甲基丙烷油酸酯(TMPTO)合成酯类基础油为对象,开发胺类和酚类抗氧化添加剂,研究添加剂对合成酯类基础油基本理化性能与热氧化性能的影响规律,为高性能合成润滑油及其抗氧化添加剂的发展提供试验数据和理论基础。本文分别提出了一种采用离子液体催化合成烷基二苯胺抗氧剂的新方法,一种一步合成3-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯的新方法。试验测试了不同热氧化条件下,合成的抗氧添加剂对TMPTO基础油的主要理化性能、分子官能团结构和摩擦学性能的影响。热氧化性能实验数据表明:在135℃热氧化480h条件下,胺、酚组合抗氧剂对TMPTO粘度增长抑制效果稍好,丁基辛基二苯胺对TMPTO总酸值增长的抑制效果最好。在200℃热氧化96h条件下,丁基辛基二苯胺对TMPTO粘度增长抑制效果明显,胺、酚组合抗氧剂对TMPTO的总酸值抑制效果较好。红外光谱和拉曼光谱分析表明,添加抗氧剂能保护基础油在热氧化作用前中期的分子结构较为完整,延缓碳链上-CH2消耗。在丁基辛基二苯胺作用下,基础油的不饱和C=C的烯基氢=C-H键容易发生脱氢变化。3-(3,5-二叔丁基-4-羟基苯基)丙酸十八烷醇酯保护TMPTO时,基础油分子中不饱和C=C键容易直接断开转变。摩擦学试验表明所开发的抗氧剂在热氧化条件下对酯类油TMPTO摩擦系数和磨斑直径的影响相对较小。基于典型热分析(TG、DTA和DSC)技术开展热分析动力学研究,建立了润滑油氧化反应动力学活化能计算方程,探讨润滑油热氧化性能评价理论方法。采用TG、DTA的分析方法测定加速热氧化及其润滑油质量损失情况,结果表明3-(3,5-二叔丁基-4-羟基苯基)丙酸十八烷醇酯在TMPTO中的抗热氧化分解能力最好。采用DSC的分析方法准确反映了热氧化反应的热量交换情况,演算表明胺、酚组合抗氧剂的抗热氧化能力最好。通过PDSC分析检测润滑油起始氧化温度和反应活化能,表明胺、酚组合抗氧剂的起始氧化温度226℃和起始氧化反应活化能140.545KJ/mol均高于另外两种抗氧剂,其验证结果与DSC的结论保持一致。采用分子动力学模拟方法研究抗氧剂作用于TMPTO基础油的热氧化过程,结合抗氧剂在润滑油中热氧化的性能试验结果,探讨了基础油TMPTO及其在抗氧剂参与下热氧化反应的作用机制。基础油分子主要变化特征:首先发生分子内分解生成油酸基和乙烷基环丙烷甲基油酸酯。乙烷基环丙烷甲基油酸酯受热氧化形成乙烷基环丙烷甲基过氧化物或乙烷基环丙烷甲基氢过氧化物,并进一步氧化成己烯醇。油酸基极易热分解形成十七烯自由基,转变成过氧化十七烯过渡态。丁基辛基二苯胺的作用特征在1273K中主要脱去仲胺上的氢原子,在1473K中形成丁基辛基二苯胺共振体。这有利于减缓TMPTO发生深度氧化和分解,主要形成较多长碳链双烯自由基或多烯氢过氧化物。3-(3,5-二叔丁基-4-羟基苯基)丙酸十八烷醇酯在润滑油热氧化过程中容易分解成氢过氧化十八烷和2,6-二叔丁基4-丙酸基苯酚基,其在1273K热氧化反应中期转变为2-叔丁基-4-过氧化乙基-6-氢过氧叔丁基苯酚;而在1473K热氧化中转变成2,6-二叔丁基-4氢过氧乙基-苯酚共振体,最终分解为稳定物质2,6-二叔丁基-4乙基苯酚,同时十八醇经脱氢形成十八烯。这对基础油分子发生深度分解和氧化反应有所减缓,主要特征是容易形成较多短碳链烯基、烯氢过氧化物或其他氧化物。胺、酚组合抗氧剂展现出协同作用,延缓了基础油分子体系内分子产物增多和链增长反应进程。