【摘 要】
:
随着高性能计算、大数据与人工智能的不断融合,高性能计算社区亟需同时支持这三种场景的计算系统来加速科学发现。然而,爆炸性增长的科学数据以及不同场景下应用截然不同的I/O特征促使融合应用呈现前所未有的复杂性。与此同时,不断加深的存储层次和多样化的数据定位需求进一步增加数据管理难度,导致高性能计算系统面临严峻的数据存储与管理挑战。为了在高性能计算系统上有效支持融合应用,本文结合层次式存储结构和应用特征,
论文部分内容阅读
随着高性能计算、大数据与人工智能的不断融合,高性能计算社区亟需同时支持这三种场景的计算系统来加速科学发现。然而,爆炸性增长的科学数据以及不同场景下应用截然不同的I/O特征促使融合应用呈现前所未有的复杂性。与此同时,不断加深的存储层次和多样化的数据定位需求进一步增加数据管理难度,导致高性能计算系统面临严峻的数据存储与管理挑战。为了在高性能计算系统上有效支持融合应用,本文结合层次式存储结构和应用特征,研究融合应用场景下数据管理的关键问题,优化高性能计算系统的数据管理能力并提升应用I/O性能。本文的主要工作包括:1.针对高性能计算系统存储层次不断加深的趋势,本文设计基于层次式存储结构的数据管理系统,统一管理内存、固态硬盘等多个存储层次,为融合应用提供高效数据缓存空间。为充分发挥不同存储层次的性能和容量等特点,该层次式数据管理系统结合应用数据访问模式定制数据管理策略,协调数据在各个存储层次的分布方式。此外,针对存储层次加深引起的数据局部性变化,本文设计数据感知的任务调度机制,配合资源管理系统尽可能将任务调度到拥有数据的计算资源。相比于底层并行文件系统,该层次式数据管理系统能够为应用带来54%的性能提升。2.针对单一数据管理策略无法充分发挥层次存储结构性能优势的问题,本文以科学工作流应用为代表,提出面向融合应用的自适应数据管理技术。本文将层次式存储结构下的数据放置问题抽象为分类问题,提出基于分类模型的智能数据放置策略:该策略以最小化科学工作流应用的总I/O时间为目标,挖掘不同应用特征和系统实时状态下数据放置策略对应用总I/O时间的影响,并训练分类模型智能做出数据放置决策。数据预取问题方面,本文分析科学工作流应用的数据流图拓扑结构和数据访问特征之间的关系,提出针对文件类别的自适应数据预取策略:通过结合局部性预取策略和智能预取策略的各自优势,提升复杂数据访问模式识别能力。相比于固定数据放置策略,本文提出的自适应数据放置策略能够实现34%的I/O性能提升;相比于传统局部性预取策略,本文提出的自适应预取策略识别复杂数据访问模式的能力显著提升,并能够降低54.2%的数据读取时间。3.针对并行文件系统管理海量科学数据时面临的数据定位挑战,本文提出耦合文件系统的索引与查询优化。文件粒度数据定位问题方面,本文设计并发元数据提取机制,快速提取文件系统中已有文件的“应用定制元数据”信息,通过定制的层次式哈希索引结构,高效满足文件粒度定位需求。记录粒度数据定位问题方面,本文采取原位索引构建机制,允许数据在写入文件系统的同时构建索引信息;为了权衡索引粒度与索引构建开销,本文提出轻量级Range-bitmap索引结构;结合本文设计的并行查询处理机制,记录粒度数据定位需求能够被快速响应。对生物和气象等数据集的测试表明,本文设计的文件粒度索引查询方案能够在毫秒内从包含数百万个文件的目录中定位目标文件;本文设计的记录粒度索引查询方案相比于遍历整个数据集定位内部数据的方式实现2个数量级的查询速度提升。
其他文献
非合作双基地雷达探测系统由于具有“四抗”特性且成本较低,成为近年来雷达领域的研究热点。利用非合作雷达信号作为外辐射源的被动探测系统不仅提高了外辐射源雷达的探测威力性能,而且扩展了可利用的外辐射源种类。但系统的研究面临诸多问题和挑战,特别是系统探测过程中的杂波干扰以及低检测概率下的目标跟踪问题。本文围绕非合作双基地雷达的杂波干扰抑制以及目标跟踪关键技术开展了深入研究工作。主要内容概况如下:第二章分析
空间信息网络是构建未来全球数据通信业务的基础性平台,是天、空、地一体化的集成网络系统,能够为用户提供广域无缝的信息网络服务,在国防安全、航空航天、应急救援、智慧城市等多个领域都具有广阔的应用前景。与传统的信息网络相比,空间信息网络采用多星共轨、空地协同的网络架构来提升网络的传输、覆盖以及稳定性等能力。由于网络中节点种类多样、数量众多、功能各异,空间信息网络结构非常复杂,大大增加了网络体系结构设计的
在战场环境、灾害救援等应用中,由于各类干扰、破坏的影响,通信基础设施的可靠性难以保障,为信息的高效传输带来极大挑战。机会网络通过存储-携带-转发这种点对点通信模式,克服了传统移动自组织网络需要较为稳定的通信链路的局限性问题,提供了一种尽力而为式的鲁棒性通信策略。通过高效运用动态、稀疏的通信机会,机会网络可以深度挖掘并应用各类通信资源的能力,对于高动态不确定性环境下的信息传输具有重要意义。但是,机会
高分辨率成像是合成孔径雷达(Synthetic Aperture Radar,SAR)系统研制与应用的关键环节。SAR系统的高分辨率探测感知特点,有效提升了SAR在焦点区域信息获取和态势感知能力,使其成为军用和民用遥感领域重要的获取信息手段。与高分辨率SAR相适应的高精度高效成像算法、运动误差补偿算法、宽幅连续测绘体制设计等仍面临诸多问题与挑战。本文立足于SAR高分辨率应用需求,对高分辨率SAR的
多输入多输出(Multiple-Input-Multiple-Output,MIMO)技术和多跳技术能够通过引入空间分集对抗衰落并提高频谱利用率,进而达到提升系统容量、增强传输可靠性的目的,是目前研究的热点。为进一步提高MIMO技术和多跳技术的信息可靠性,本文在MIMO技术和多跳技术传输中引入混合自动请求重传(Hybrid Automatic Repeat re Quest,HARQ)协议,并以提
高性能计算机的出现和快速发展,使其被广泛应用于云计算、安全、大数据处理等领域。据统计大数据处理占据了46%的份额位居榜首。存储结构的复杂多样,计算机体系结构的多样性以及大数据处理问题体量大、数据复杂多样等特点,高性能计算机在大数据处理领域的应用面临着巨大的挑战。本文主要研究多种存储结构下不同应用场景的异构并行算法和优化技术,选取了大数据处理中的迭代算法、高吞吐率需求、大规模网络融合三种典型的应用问
传统通用处理器的设计与制造受限于功耗、散热等因素,其计算能力的持续提升遇到瓶颈,不能满足人们日益增加的计算能力需求。由通用多核处理器和专用加速器组成的异构众核系统具有很好的计算能耗比,在高性能计算领域和嵌入式计算领域都得到了越来越广泛的应用。然而,通用多核处理器与加速器间的数据搬运开销(通信开销)却成为影响异构程序性能的重要因素。多任务流技术是一项可以高效利用异构系统计算资源的编程技术。它通过对计
非合作双基地雷达利用第三方辐射源发射的信号实现目标探测,由于其本身不辐射信号,因此战场生存能力强,并且能够有效弥补传统单基地有源雷达在抗干扰和反隐身等方面的不足,具有广阔的军事应用前景。课题研究的非合作双基地雷达系统基于波形参数捷变相控阵雷达辐射源,其复杂的波形调制形式给非合作双基地雷达的信号处理带来了许多困难。本文在课题组研制的非合作双基地雷达系统样机的基础上,围绕系统在信号处理中面临的实际问题
得益于当前软硬件技术和互联网的飞速发展,云计算已经成为最具影响力的信息基础设施,在社会生产生活的各个领域都有着广泛的应用。通过将各种硬件资源整合和虚拟化,云计算为用户及其应用提供了一个灵活、高效的虚拟化存储和计算环境。然而,云计算中的虚拟化环境在给用户带来便捷服务的同时,也面临着来自不同层面的安全威胁。与此同时,日益丰富的攻击手段和虚拟化导致的攻击面拓宽,给虚拟化环境的安全保护带来了新的挑战。如何
离子具有相干时间长、保真度高等优点,因此囚禁离子系统是实现量子计算、量子模拟以及精密测量的重要平台之一。囚禁离子系统的规模化与集成化是近年来研究的热点。表面电极离子阱是解决这一问题的主要平台之一,但其研究还处于探索阶段。本文主要研究了表面电极离子阱的优化设计、离子阱的制备及囚禁离子系统的优化。主要内容与创新点如下:1、设计了具有装载区、操作区与传输区的多功能表面电极离子阱。提出了径向双势阱来作为操