论文部分内容阅读
巨噬细胞是先天免疫系统的高度可塑性细胞,参与多种病理进程,对许多毒性刺激诱导的氧化应激、炎症和凋亡具有高度的抗性。酿酒酵母β-葡聚糖已被证明是一种有效的免疫增强剂,课题组前期研究证实其可降低肉羊机体氧化应激。本研究首先利用LPS诱导RAW264.7细胞建立氧化应激和炎症反应模型,初步证实酿酒酵母β-葡聚糖的抗氧化作用。然后,在氧化应激模型基础上,探究酿酒酵母β-葡聚糖对RAW264.7细胞抗氧化、抗炎及抗凋亡的分子作用机制,为预防和治疗氧化应激相关性疾病提供新的思路。本研究主要从细胞信号通路转导方面对酿酒酵母β-葡聚糖抗氧化、抗炎和抗凋亡作用机制进行研究,结果如下:(1)试验一以LPS为诱导物,氧化应激和促炎细胞因子作为建立氧化应激和炎症模型指标,探究LPS对RAW264.7细胞氧化损伤效果。结果表明:0.1~5μg/m L LPS处理RAW264.7细胞12 h后,细胞内氧化应激指标MDA和ROS产生显著增多,抗氧化指标SOD、CAT和GSH-Px酶活性显著降低;细胞培养上清液中促炎细胞因子IL-1β、IL-6和TNF-α释放显著增多,细胞内COX-2和i NOS含量显著升高。综合多项指标,以1μg/m L LPS作为建立细胞氧化应激和炎症模型的最佳浓度。(2)试验二在试验一基础上,初步探讨酿酒酵母β-葡聚糖对LPS诱导的RAW264.7细胞氧化应激和炎症损伤的缓解作用。结果表明:酿酒酵母β-葡聚糖增强抗氧化酶SOD、CAT、GSH-Px和HO活性,抑制LPS诱导的MDA和ROS产生而发挥抗氧化作用,降低IL-1β、IL-6和TNF-α的释放以及COX-2和i NOS水平而起到抗炎效果,推测可能是酿酒酵母β-葡聚糖激活抗氧化转录因子从而发挥预保护作用。这些结果充分说明β-葡聚糖具有抗氧化和抗炎的双重调节作用,从而抑制细胞内ROS产生,进而对RAW264.7细胞起到保护作用。但其调控抗氧化和抗炎信号转导机制仍需在氧化应激模型中进一步验证。(3)试验三以试验二为基础进行深入性研究,本试验旨在探讨β-葡聚糖抑制LPS诱导的RAW264.7细胞氧化应激分子机制。为阐明β-葡聚糖抗氧化的分子机制,我们设计了β-葡聚糖添加试验,结果表明:β-葡聚糖能够激活其受体Dectin-1介导的Nrf2/HO-1信号转导通路。氧化应激模型中,在LPS抑制Nrf2和HO-1表达的条件下,β-葡聚糖能显著上调LPS诱导的Dectin-1、Nrf2和HO-1的表达,抑制ROS产生,但β-葡聚糖这些作用可被Dectin-1抑制剂Laminarin、Nrf2抑制剂ML385和HO-1抑制剂Sn PP逆转。该结果表明β-葡聚糖可以通过Dectin-1/Nrf2/HO-1信号通路抑制LPS诱导的RAW264.7细胞氧化应激。(4)试验四在试验三基础上,旨在探讨β-葡聚糖抑制LPS诱导的RAW264.7细胞炎症反应的分子机制。结果表明:炎症模型中,LPS显著激活炎症反应转录因子NF-κBp65表达,促炎细胞因子IL-1β、IL-6、TNF-α、COX-2和i NOS基因和蛋白表达显著增强;β-葡聚糖能显著抑制LPS诱导的NF-κBp65及下游促炎细胞因子的表达,而这种抗炎效应能够被Sn PP逆转。该结果表明β-葡聚糖可以通过Nrf2/HO-1信号通路抑制LPS诱导的RAW264.7细胞炎症反应。(5)试验五基于试验四结果,旨在探讨β-葡聚糖抑制LPS诱导RAW264.7细胞NLRP3形成的分子机制。结果表明:LPS显著激活NLRP3炎性小体,增强ASC、IL-18和Caspase-1表达;添加β-葡聚糖作用后,能显著抑制NLRP3、ASC、Caspase-1和IL-18表达,但这种抑制状态能够被Sn PP逆转。该结果表明β-葡聚糖可以通过Nrf2/HO-1信号通路抑制LPS诱导的RAW264.7细胞NLRP3形成。(6)试验六基于以上试验结果及氧化应激造成细胞凋亡的理论基础,旨在探讨β-葡聚糖抑制LPS诱导的RAW264.7细胞凋亡的分子机制。结果表明:LPS显著增强细胞凋亡率,β-葡聚糖则显著降低细胞凋亡率;LPS显著增强Bax表达,抑制Bcl-2表达,添加β-葡聚糖作用后,Bax表达显著下降,Bcl-2表达显著上升,而这种效应能够被Sn PP逆转。该结果表明β-葡聚糖可以通过Nrf2/HO-1信号通路抑制LPS诱导的RAW264.7细胞凋亡。综上所述,本研究阐明β-葡聚糖可激活Dectin-1介导的Nrf2/HO-1信号通路抑制RAW264.7细胞内ROS产生、NF-κBp65和NLRP3表达和凋亡,从而对细胞发挥保护作用。因此,以激活Nrf2/HO-1信号通路为靶标有望成为防治氧化应激相关疾病的一个新途径。