论文部分内容阅读
存在于种群间的捕食关系,对捕食者和食饵群体的数量及质量起着重要的调节作用。研究捕食-食饵模型的动力学性质,有助于了解捕食过程中的调节机制,进而准确预测和估计捕食者和食饵的种群数量。Allee效应函数是刻画群居种群增长的一类重要的增长率函数,本文主要研究几个具Allee效应增长的捕食-食饵模型的动力学性质,包括常值稳态解的稳定性,Hopf分支、Turing-Hopf分支、Hopf-Hopf分支的存在性及分支性质等。主要工作如下:(一)建立了具强Allee效应和时滞的捕食-食饵模型。首先借助抛物方程的基本理论证明了该模型解的全局存在唯一性。通过分析特征方程根的分布,研究了常值稳态解的稳态性并给出系统双稳的充分条件。论证了由时滞引起的Hopf分支的存在性,证明了系统存在一列Hopf分支点并给出分支点的表达式。借助中心流形理论和规范型方法探究了分支点附近系统的动力学性质,最后通过数值模拟验证了理论结果。研究表明,当捕食者的初始值足够大时,系统会产生“过度捕食”现象,此时捕食者和食饵最终都将灭绝;当模型的参数满足一定的条件时,不同的种群初始值将使系统最终趋于不同的稳态,这表明系统对初值具有较强的敏感性。此外,在一定条件下,时滞会导致正常值稳态解的失稳,从而使系统出现周期震荡的解。(二)研究了一个具强Allee效应和阶段结构的捕食-食饵模型。首先证明了系统解的基本性质,分析了常值稳态解的存在性、稳定性及吸引域。其次,通过选取成熟年龄为分支参数,探究了系统Hopf分支的存在性。在中心流形上,借助规范型理论研究了Hopf分支的性质。最后,借助数值模拟例证了理论结果。研究表明,具阶段结构的模型仍会产生“过度捕食”现象与“双稳”现象。在一定条件下,当成熟年龄位于某一较大值附近时,系统的正常值稳态解是局部稳定的;当成熟年龄逐渐减小至某个临界值附近时,正常值稳态解失稳,Hopf分支产生从而出现周期震荡的解。随着成熟年龄继续减小,系统还可能产生暂时的周期震荡的解。(三)考察了具强Allee效应和双时滞的捕食-食饵模型。在该模型中,将捕食者的消化时滞与食饵的种内竞争时滞同时作为研究参数,借助稳定性切换曲线的方法,探究了在双时滞作用下系统正常值稳态解稳定性的结论。其后,通过定义稳定性切换曲线上点的切换方向,推导出双参数平面上的Hopf分支定理及Hopf-Hopf分支定理,进而计算了Hopf-Hopf分支点附近系统的规范型。研究结果表明,系统在Hopf-Hopf奇点附近具有丰富的动力学性质,包括常值稳态解、空间齐次周期解、空间非齐次周期解的存在性。此外,“过度捕食”现象在该模型中仍然存在。最后通过数值模拟验证了所得的理论结果。(四)研究了具弱Allee效应的Leslie-Gower模型的动力学性质。首先,分析了系统正常值稳态解的存在性以及全局吸引性。其次,详细分析了双参数同时变化对系统动力学的影响。通过分析特征方程根的分布,探究了系统Hopf分支、Turing分支以及Turing-Hopf分支、Turing-Turing分支的存在性,借助规范型理论计算了系统在Turing-Hopf分支点附近的规范型。分析结果表明,正常值稳态解稳定区域的边界包含一条Hopf分支曲线以及可数条Turing分支曲线。这些分支曲线的交点包括Turing-Hopf分支点与Turing-Turing分支点,在这些分支点附近,系统可能会产生空间齐次周期解、空间齐次稳态解、空间非齐次周期解以及空间非齐次稳态解等。最后,借助数值模拟验证了上述理论结果。