【摘 要】
:
膝关节是人体关节中最大、最复杂的关节之一,对人们的日常生活和运动有重要作用。由于膝关节常承受数倍于人体重量的负载,所以膝关节亦是人体中最易受损的关节之一。全膝关节置换术作为一种治疗膝关节严重损伤的有效手段,现已广泛应用于膝关节的临床治疗中。尽管患者对膝关节置换术的满意度颇高,但术后胫骨假体的无菌性松动往往会导致假体失效,患者因此必须进行翻修手术。植入假体与植入部位骨的刚度差异过大,导致在植入假体周
论文部分内容阅读
膝关节是人体关节中最大、最复杂的关节之一,对人们的日常生活和运动有重要作用。由于膝关节常承受数倍于人体重量的负载,所以膝关节亦是人体中最易受损的关节之一。全膝关节置换术作为一种治疗膝关节严重损伤的有效手段,现已广泛应用于膝关节的临床治疗中。尽管患者对膝关节置换术的满意度颇高,但术后胫骨假体的无菌性松动往往会导致假体失效,患者因此必须进行翻修手术。植入假体与植入部位骨的刚度差异过大,导致在植入假体周围的骨组织上产生了应力遮挡效应,该效应引发的骨吸收会造成假体无菌性松动。本文首先通过健康志愿者的下肢CT扫描数据重建了自然膝关节的三维几何模型,并基于此建立了全膝关节置换有限元模型,其次设计了三种功能梯度材料(functionally graded materials,FGMs),分别为两种不同孔隙率控制参数的钛合金-羟基磷灰石复合功能梯度材料(FGMⅠ和FGMⅢ)以及一种钛合金-理想骨修复材料复合功能梯度材料(FGMⅡ)。通过有限元方法比较了膝关节在屈曲0°、15°、30°、45°、60°时钛合金胫骨假体和设计的三种功能梯度材料胫骨假体对胫骨近端松质骨上应力的影响。结果显示,功能梯度材料胫骨假体相较于钛合金胫骨假体可以有效降低胫骨松质骨和胫骨假体上的最大Von Mises应力;通过分析沿胫骨假体和胫骨松质骨路径上的应力发现,功能梯度材料胫骨假体相较于钛合金假体可以显著提高胫骨近端松质骨上的应力水平,同时可以降低胫骨假体上的应力。结果表明,在设计的三种功能梯度材料中,FGMⅠ的综合效果要优于另外两种功能梯度材料,FGMⅢ的效果次之,FGMⅡ效果最弱。本文设计的功能梯度材料胫骨假体相对于常用的钛合金胫骨假体可以有效改善假体和胫骨近端松质骨上的应力水平,减轻松质骨上的应力遮挡以及假体上的应力集中现象,降低胫骨假体无菌性松动的几率,进而可以延长胫骨假体的使用寿命。
其他文献
医用钛合金如Ti-6Al-4V(TC4)合金由于具有优异的机械性能以及良好的生物相容性常作为人体植入体的首选材料,被广泛应用于人体硬组织替代和修复。然而,钛合金长期在复杂的人体环境中,会释放有毒金属Al3+和V-离子进入周围组织,且本身的生物活性不佳限制了其应用。羟基磷灰石(HA)是人体和动物骨骼一种非常重要的无机组成成分,具有与天然骨骼相似的化学性、生物相容性和骨诱导性。但其强度低、韧性差、脆性
组织工程皮肤通过在体外培养细胞,与生物支架共同构建皮肤替代物,其中表皮替代物是组织工程皮肤中的重要部分。单一的生物材料作为细胞体外生长的3D支架并与种子细胞在体外共同构建表皮替代物时,存在机械性能弱、生物相容性差等缺陷,而采用混合的生物材料用于细胞的培养并在体外构建表皮替代物可以将不同生物材料的缺陷进行相互弥补,更有利于体外表皮替代物的构建。本文以在体外构建表皮替代物为研究目的,利用了琼脂糖、壳聚
纯钛及其合金因其具有良好的力学性能和生物相容性被广泛应用于骨植入体材料,但其骨整合能力仍显不足。植入体的骨整合是一个由炎症反应驱动的复杂生物学过程,炎症反应的发展和结果将影响内皮细胞的成血管能力,而植入体周围的血管新生又是成骨和骨整合的先决条件。巨噬细胞作为炎症反应的主要效应细胞,可响应植入体表面理化性质并分泌特定的细胞因子介导血管新生。然而,外泌体作为细胞间通讯的重要媒介,是否参与植入体表面介导
相比于钛合金、不锈钢以及钴铬合金等传统的医用植入材料,镁合金展现出其独特的优良性能,例如:与人体骨骼相似的弹性模量和密度,优良的铸造性能以及较高的比强度。此外,镁合金还可以在植入人体后自行降解为镁离子,被人体吸收后排出体外,避免二次手术对患者造成的伤害。综上所述,镁合金有潜力成为新一代的可降解生物医用材料。然而,镁合金的耐腐蚀性能差且腐蚀过程不可控,这极大的限制了其在医学领域中的应用。目前提高镁合
生物组织材料的特性一直是生物力学、生物材料等领域研究的热门和重点问题。随着生物医学工程领域的快速发展,生物材料的特性对于研究生物组织至关重要。有研究表明,生物组织材料的图像灰度、密度和其力学性能之间有着十分密切的关系,并可应用于生物医学工程的众多研究领域中,如在生物在体、离体组织的力学性能分析,生物组织有限元建模和分析,组织损伤与康复等领域。本文着力于研究生物组织材料的力学性能与密度以及图像灰度之
硬组织植入体虽已用于临床,但骨整合能力仍显不足。植入体周围血管生成是成骨和骨整合的先决条件,因此通过提高植入体周围内皮细胞的成血管能力促进骨整合受到广泛关注。巨噬细胞作为生物体重要的免疫细胞,现已被证实它在血管生成中发挥免疫调节功能。缺氧的微环境可稳定巨噬细胞和内皮细胞的缺氧诱导因子-1α(HIF-1α),从而促进血管内皮生长因子(VEGF)的表达和分泌,诱导血管生成。然而,作为细胞间通讯的新型载
皮肤损伤是人类甚至动物身上最为常见的外科伤口之一。加速伤口愈合、改善愈合效果是人类长期追求的目标。当前伤口敷料行业面临着治疗理念革新和产品迭代加速等多重考验,基于湿性愈合理论的伤口敷料正逐步取代传统的干性敷料,敷料发展逐渐趋于多样化、仿生化、定制化。然而,目前的伤口敷料仍存在诸多问题,如力学性能与伤口创面不匹配、抗菌时间不足、透气性差、容易造成二次感染,距离成为理想伤口敷料尚有差距。从基础研究和临
在当今社会,心血管疾病在世界范围内的发病率和致死率在逐年提升,迫切需要一种高性能、对人体无害的心血管支架材料。镁合金由于其低密度,良好的生物相容性,以及优异的力学相容性等特点,被认为是理想的心血管支架材料。但镁合金在人体内的降解速率较快,如何在体内服役期间保证其力学完整性,成为镁合金心血管支架走向现实应用的难题。因此如何提高镁合金在人体的耐腐蚀性能,降低其降解速率,成为了近年来科研工作者的研究热点
为实现心血管疾病治疗中组织器官的替换,寻找一种合适的生物墨水来进行三维构建以打印组织器官的替代物势在必行。GelMA水凝胶作为一种生物相容性和细胞活性良好的生物材料已被广泛应用于生物墨水的打印。但是该生物墨水打印的结构力学性能并不优异,因此需要改善其力学性能,并进一步提高其生物相容性,以便用于人工血管材料的打印。通过将ODMA插入GelMA中可使ODMA-GelMA水凝胶变得更有韧性、更有弹性。本
细胞在损伤修复、癌症转移等生理病理过程的铺展与迁移变形都开始于局部的细胞骨架蛋白、力学、形态学改变,并且始终紧密联系。细胞边缘区域具有活跃而显著的变形,是体内、体外的微环境条件细胞感知微环境改变并做出响应的最直接表现之一。这一过程综合了细胞内骨架蛋白及其调节蛋白、细胞力学性质、细胞结构与形态、细胞外基质特性等诸多环节的调控。体内细胞在生长、迁移、分化的过程中,均需要调节边缘以适应体内微环境和生理特