极值拟共形映射与Teichmuller空间

来源 :复旦大学 | 被引量 : 0次 | 上传用户:sdfg444
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要目的在于研究拟共形映射极值问题以及与之相关的Teichmüller空间性质.拟共形映射的概念诞生于上世纪30年代,1940年左右,德国数学家Teichmüller利用极值拟共形映射理论来研究Riemann模问题,对这一经典的几何问题给予了完美的解答.此后,对拟共形映射与Teichmüller空间理论的研究就一直倍受数学家们所关注,Ahlfors,Bers,Gehring,Earle,Gardiner,Reich,Strebel,李忠,伍胜健,沈玉良和陈纪修等数学家都对该理论进行了深刻的研究.如今,拟共形映射与Teichmüller空间理论已交叉渗透到微分几何、偏微分方程、拓扑学等其它数学分支.   拟共形映射的极值理论主要研究给定边界对应的拟共形映射族中极值映射的存在性、唯一性、以及极值映射的性质、特征的刻画等问题.本文的第二章和第三章将研究这些问题并得到一系列结果.   对数导数在判定共形映射能否拟共形映射扩张、估计区域的单叶性内径以及描述万有Teichmüller空间的性质方面都起到非常重要的作用,对数导数的研究将对拟共形映射理论的发展起到积极的作用.本文的第四章我们将研究万有Teichmüller空间对数导数模型的一些几何性质.   Teichmüller空间的切空间(也称无限小Teichmüller空间)对研究Teichmüller空间的性质以及刻画极值拟共形映射的特征都有重要的意义.因此本文中我们也将讨论无限小Teichmüller空间中的一些未知的问题.全文共分为五章.   第一章,绪论.我们简要的介绍拟共形映射与Teichmüer空间理论的历史背景和研究意义,并阐述本文所研究问题的由来和现状以及主要结果.   第二章,二次抛物区域上拟共形映射的极值性.在给定所有边界点对应的前提下,我们已经知道了很多类区域上极值拟共形映射的刻画和性质,但是若降低边界对应要求,同样区域上极值拟共形映射的情况还不清楚.strebel([94][95])曾经对几种不同的区域研究过这个问题,我们将在二次抛物区域上研究这个问题.   第三章,Teichmüller空间与其切空间的一些非等价性.刻画一个极值或者唯一极值拟共形映射的特征一直是拟共形极映射值理论研究的热点.Hamilton([41]),Krushkal([45]),Reich和Strebel([76])共同研究得到了极值拟共形映射的特征刻画.1998年,Bozin,Lakic,Markovic和Mateljevic([9])研究得到了唯一极值拟共形映射的特征刻画.从这些论文中我们发现Teichmüller空间与其切空间具有许多等价的极值性质.在本章中,我们将研究Teichmüller空间与其切空间在Strebel点、极值Teichmüller Beltrami系数的存在性、常数模极值Beltrami系数存在性之间的等价性等问题.   第四章,万有Teichmüller空间对数导数模型的几何性质.对数导数和单叶函数的拟共形扩张具有深刻的联系.万有Teichmüller空间对数导数模型也具有许多奇特的几何性质,Zhuravlev([116])证明了万有Teichmüller空间对数导数模型是由无穷多个互不相交的分支组成的.在这一章,我们研究万有Teichmüller空间对数导数模型每个分支内测地线和球的几何性质.   第五章,无限小Teichmüller空间中的问题.从本文第三章,我们知道Teichmüller空间与无限小Teichmüller空间具有许多相似和不相似的性质.在这一章,我们主要研究无限小Teichmüller空间中测地圆盘的个数以及无限小极值Beltrami系数的Hamilton序列问题.
其他文献
随着现代科学技术的发展,在许多科学领域的研究中,例如工程技术,控制理论,优化理论,经济理论等等都涉及微分包含,微分包含是非线性分析理论的一个重要分枝,它与微分方程,最优控制以及
十六届四中全会把“推进决策的科学化、民主化”,确定为当前和今后一个时期加强党的执政能力建设的一项重要任务。领导干部的领导水平和领导能力,涉及到理论素养、思想水平、
近些年来,不少地方都大力倡导机关干部下村蹲点。有的县市还浩浩荡荡下派数千名机关干部到各村充当农村工作指导员。这是令人深感欣慰的大事、好事,是我党实践“三个代表”重
本文研究与Virasoro李超代数对应的李共形超代数,称为Virasoro共形超代数。作为C[?]-模,它由{L,G,F}生成,并且满足如下运算:  [LλL]=(?+2λ)L,[LλF]=(?+λ)F,[FλL]=λF  
在很多数学教学课堂中,教师通过有效情境的创设,缩短了数学知识与学生现实生活的距离,使学生用自己掌握的数学知识、形成的数学能力解决生活中的实际问题。但冷静审视又不难
本论文首先就中立型随机泛函微分方程(NSFDE),分析了用于判断零解矩稳定性和解的矩有界性的Razumikhin型定理的联系,得到了两者的相似性和不同点,然后借助分析结果参考现有命题
学位
随着国内部分大中城市整体规划的要求,以及人们对环境质量要求的日益提高,越来越多的园林工程已经被建成或正在计划兴建中。园林工程施工过程中,涉及到成本控制的问题相对较
期刊
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
本学位论文致力于研究Lp-空间中凸体几何的度量不等式和极值问题,隶属于Lp-Brunn-Minkowski理论(又称为Brunn-Minkowski-Firey理论)领域,该领域是近十多年来在国际上发展非常迅