论文部分内容阅读
随着激光应用的不断发展,对激光器性能指标的要求也越来越高。飞秒激光器以其独特的优势,被广泛的应用于各个领域。但是,当脉冲宽度达到飞秒量级的时候,由于系统中各个器件可能存在不确定因素,比如引入三阶色散或者非线性效应,而导致脉冲的形状变差。这对激光器的应用会造成很大的限制。本文根据啁啾光纤光栅(CFBG)的温度特性,对啁啾脉冲放大(CPA)系统中的作为展宽器的CFBG进行温度控制,以实现精细的色散调节,从而精确补偿系统中的色散,优化输出脉冲形状。首先从理论上计算了当整体改变CFBG的温度时,其反射谱会发生漂移,色散量也会发生一定的变化。理论上推导并画出补偿系统中三阶色散时,需要给CFBG施加的温度场。在实验中,由于缺乏直接测量色散量的仪器,故提出采用自相关仪测量压缩后脉冲宽度,通过脉冲宽度的变化间接反映色散量的变化。对于二阶色散的补偿,采用对CFBG整体加温的方式,在光栅对作为压缩器的光纤CPA系统进行精确色散补偿。虽然光栅对可以通过控制光栅的间距和角度来实现系统色散的补偿,但是补偿的精度不高而且光路调节比较困难。而采用温度调谐的方法,不仅降低了光路调节的困难,同时提高了调节精度,调节精度可到达3fs/℃,很容易获得系统的最小输出脉宽。三阶色散的补偿比较复杂。根据系统中主要引入三阶色散的器件,光栅对和CFBG,建立了一个相对简单的计算模型,即不考虑系统非线性效应,同时不考虑其他器件引入的三阶色散,计算出补偿系统中三阶色散需要给CFBG施加的温度场。根据理论计算所需要的温度场,本文采用五个半导体制冷器(TEC)来拟合所需要的温度场,并且获得一定的效果,脉冲底座明显减小了。但是由于引入的温度场不是连续的,故引入了更高阶的色散,脉冲的底座虽然减小了但是变宽了。为了深入的研究温度场对脉冲底座的影响,该文将其分为三组,分别研究每一组对脉冲底座的影响。实验结果表明中间的温度越高,脉冲底座越低并且向两边扩散,而靠近中间两侧的TEC的温度越高,脉冲底座就会向脉冲中心靠拢。当然对于三阶色散的补偿还有待于进一步的研究,并且对于系统的非线性效应并没有考虑在内,而非线性也会对最后脉冲输出产生一定的影响,所以温度调谐CFBG精确补偿光纤CPA系统的色散还需要继续努力深入研究。