【摘 要】
:
近年来,在生物医学领域里,随着激光器的不断更迭和光学器件的飞速发展,光声成像已快速的发展为一种非侵入、高效的混合模式的生物医学成像技术。光声成像的原理是吸收目标受到脉冲激光照射后,目标物体会发生热弹性膨胀吸收热量后向外辐射出超声波,使用特定的探测器可以获取到超声信号,最后使用数据重建得到光声图像,即得到吸收目标对激光的吸收情况分布。光声成像技术相较于纯声学或纯光学而言具有较高的对比度和较深的成像深
【基金项目】
:
广东省“珠江人才计划”引进创新创业团队项目(2016ZT06G375);
论文部分内容阅读
近年来,在生物医学领域里,随着激光器的不断更迭和光学器件的飞速发展,光声成像已快速的发展为一种非侵入、高效的混合模式的生物医学成像技术。光声成像的原理是吸收目标受到脉冲激光照射后,目标物体会发生热弹性膨胀吸收热量后向外辐射出超声波,使用特定的探测器可以获取到超声信号,最后使用数据重建得到光声图像,即得到吸收目标对激光的吸收情况分布。光声成像技术相较于纯声学或纯光学而言具有较高的对比度和较深的成像深度,主要得益于其较强的吸收分布和较大的组织密度差异。目前的光声成像按照耦合介质的不同大致可以分为接触式和非接触式两种方式。所谓的接触式探测指的是在对超声信号进行检测时,大多数需要超声探测器和被测样品之间填充耦合介质(水或耦合凝胶),这就会不可避免地对样品造成一定程度的污染和破坏,影响了其应用的范围,同时会给临床应用带来诸多的不便,这就导致迫切的需要一种非接触、成本低、小型化和安全性高的成像手段。非接触光声成像由于其无需耦合剂、高效快速和高分辨率的众多优势得到了广泛的关注,比如空气耦合超声换能器技术和全光学检测技术。然而目前报道的非接触检测技术仍然有一定的局限性,一般使用的低频超声换能器体积大导致其信噪比低,而全光检测技术系统的光路相对复杂,扫频光源价格昂贵,导致激励和接收单元体积大无法实现一体化。本文针对上述问题,首先验证小体积和低成本的蓝波段激光二极管应用在生物医学成像的可行性,然后提出了一种集成了长脉冲激光二极管和无膜光学麦克风的超小型非接触式光声显微成像系统,它的体积分别为9×4×4 cm3和4×0.5×0.5 cm3。碳纤维和蜻蜓脉管血管的横向分辨率达到12μm,信噪比高达17 d B,显示出未来可发展为一种简单、廉价、方便的工具的巨大潜力。主要研究内容如下:首先,制定光声成像系统的技术路线和设计方案,对各个部分进行模块化设计,包含器件选择(接收单元、激励单元和数据处理单元)、扫查方式(S扫和线扫)、系统光路的设计仿真搭建和仪器通讯及数据采集(三维电动扫查位移平台的控制;捕捉、采集和存储获得的光声信号)。然后,建立图形化编程软件Lab VIEW和硬件之间的互通,完成电机、示波器和计算机之间的串口通信、二维扫描平台的扫描控制等。其中主要包括编写电机控制程序和采集存储数据的程序以及控制和采集之间的时序逻辑,同时具有数据输入控制,参数调试,波形显示,实时的数据采集和图像预览的功能。最后,在接触式探测的情况下,提高检测灵敏度的同时验证在蓝光波段的脉冲激光二极管的生物成像能力,再设计不同的仿体样品实验验证在非接触式模式下脉冲激光二极管和无膜光学麦克风结合组成的光声成像系统的性能优异性。在此基础上,采用该非接触的光声系统初步开展在皮下微血管的成像等方面的初步研究。
其他文献
本文研究了具有不连续初值的三维PDE-ODE趋化模型全局弱解的存在性和大时间行为.全文共分为两章.第一章是绪论,介绍了本文的研究问题、课题背景以及主要内容.第二章给出了主要结果的证明.首先通过Cole-Hopf型变换将PDE-ODE趋化系统转换为抛物-双曲趋化系统,并证明当时间趋于无穷时,该系统的解收敛于常数稳态解.与已有的连续初值的结果相比,我们证明了具有大振荡的不连续初始值的渐近稳定性.我们证
随着5G时代的到来,虚拟现实技术的不断发展,再次掀起了虚拟博物馆的浪潮,中华文化的延续传承离不开新技术的载体支撑。虚拟博物馆和实体博物馆相互补充、虚拟博物馆是对实体博物馆的扩充和延伸,因此对于技术的提高、策展方式的新策略以及文传传播方式的改变显得尤为的重要。本文通过对丝路陶瓷虚拟博物馆的设计研究,主要对技术、策展方式、文化传播等三个方面展开,形成一套完整的中西文化交流的新模式。首先通过文献的分析和
随着居民消费水平的不断提升,儿童学习环境的优化愈发受到家长重视,承担儿童学习活动的儿童学习桌成为家长与市场关注的焦点。但市场现有的儿童学习桌不能有效满足儿童使用需求容易发生闲置进而造成资源浪费,儿童学习桌的可持续研究具有重要现实意义。家庭是社区的基本组成单位,伴随居民可持续意识的不断增强,社区逐渐成为可持续理念的重要实践场所,因此能否以社区为中心,在满足社区居民对于儿童学习桌使用需求的基础上提高社
自研学教育理念开始引入我国以来,我国陆续出台了各式各样的政策来推动研学话题的热潮,且大量的教育机构投身研学行业,为研学App的研究提供了良好的时代背景。据调查发现当前研学App普遍存在着这几个问题:(1)线上移动研学App与线下教育活动结合不紧密;(2)未深入地挖掘用户需求,导致产品需求功能单一;(3)缺乏针对设计指引和交互规范,导致用户体验感差。在我国研学行业良好发展以及研学App存在诸多问题的
面对日益严重的全球性能源危机和环境问题,对清洁型可再生能源材料及其器件的开发日益迫切。储能装置能否获得优异的性能与电极材料的性能密切相关。过渡金属二卤族化合物(TMDs)以及过渡金属碳化物(TMCs)具有表面体积比较大,表面活性位点比较多的特点。这些特点赋予了它们良好的动力学性能,并因其巨大的能量储存和转换潜力而引起了人们的广泛关注。本文主要以钼基化合物复合材料为研究对象,分析了其化学反应活性及电
二维材料及其异质结近年来一直是凝聚态物理和材料科学领域的前沿研究课题之一,它们对基础科学的发展以及突破纳米电子和光电子技术的瓶颈有着举足轻重的作用。在本文,我们使用第一性原理计算方法,研究了HfSe2/PtSe2范德华异质结的电子结构,并施加了应变和外部电场来调控它的电子性质;设计了一种具有Ⅲ型能带排列的WTe2/ZrS2异质结,同时研究了应变和外部电场对其电子性质的影响。首先,我们发现了HfSe
在人们的日常生活中,收听音乐是一项重要的放松方式,在不同的情感状态和生活场景下均会在用户对音乐的喜好上产生影响,而音乐中的信号能够以多种形式传递出情感表达,通常情况下用户处在不同的情感状态将会影响对当前音乐情感类别的偏好,并且用户的情感并非一直不变的,其具有较高的实时性,同时用户的生活场景也会随着快节奏的生活而不断转换,导致对音乐主题场景的需求也会随之不同。目前在多个音乐平台以及各类自媒体的快速发
在纳米甚至亚纳米级尺度,精密定位测量是高端技术装备的核心。纳米电容式位移传感器具有高分辨率、高带宽、动态响应好等优点,在精密测控领域广泛应用。针对有线传输时受距离和布线带来的不便以及纳米定位无线测控应用需求,无线纳米电容传感器亟待开发。目前关于电容传感器相关无线应用研究大都使用Zig Bee,蓝牙等协议,面向低精度,低带宽,低速率、实时性差的静态测量。本文结合实际企业项目应用需求,设计了一套基于纳
在过去的产品制造过程中往往依靠引入国外技术或标准,难以取得进一步突破性成果。因此,我国应该加强聚焦创新,特别是产品技术创新,进而加快推动我国制造业由“中国制造”向“中国创造”的转变。同时,我国制造业在进行产品技术创新过程中也经常依靠经验法和头脑风暴法等,容易导致在产品技术创新过程中存在技术创新方向不明确、创新方案设计过于依赖经验、专利侵权风险与专利价值利用不足等问题。本文主要是针对上述问题进行改进
航天航空发动机是现代飞机的动力系统,也是最为核心的组件之一,其性能很大程度决定了飞机的动力,安全性和经济性。而涡轮盘是现代飞机发动机内部最核心的零部件之一,涡轮盘通过榫槽结构与叶片直接相连。航空发动机涡轮盘榫接部位长期处于离心载荷、热载荷和振动载荷交互作用的工作环境中,其疲劳寿命和可靠性问题是航空发动机适航设计的较为薄弱的环节。涡轮盘长期工作在高温(500~800℃)高压(500MPa)高转速(5