一类神经网络模型的平衡点存在性及稳定性分析

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:apap4444
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,由于Hopfield型神经网络在信号和图像传输方面有着广泛的应用,因此关于它的研究引起了广大数学工作者的关注。本论文简要介绍了神经网络的产生、发展以及微分系统的稳定性理论,更主要的分析了一类Hopfield神经网络的解的存在性、唯一性、全局指数稳定性、有限时间的收敛性问题。正文部分首先介绍了上半连续、Filippov意义下的解、平衡点、几种矩阵类、稳定性等一些基本概念,并列出了神经网络尚待解决的相关问题。其次,研究了一类Hopfield神经网络模型解的存在唯一性问题,先利用微分包含理论和拓扑度理论,结合矩阵分析理论证明了此类系统的平衡点的存在性和唯一性。这里对激励函数的限制条件比以往的结论所要求的条件更宽松,在关联矩阵是P类矩阵的前提下,放弃了激励函数必须是可微、有界、单调的要求,所适用的神经网络方程可以既不连续,也不有界,并且选择比单调函数类应用范围更加广泛的函数类,我们要求激励函数属于有界变差函数的子类,推广了已有文献中的相关结论。之后,主要针对此类Hopfield神经网络的稳定性问题进行了分析讨论。在这一部分中,在前面已经得到解的存在唯一性的前提下,通过构造Lyapunov函数分析了系统的全局指数稳定性(GES)。最后,进一步假设激励函数是全局Lipschitz连续的,我们扩充了文献通常出现对关联矩阵的限制条件,得到系统平衡点存在唯一的充分条件。并且,通过构造Lyapunov函数,结合矩阵不等式技巧,得到了系统的全局指数稳定性;另外,得到了一维神经网络系统在有限时间内收敛的必要条件。
其他文献
20世纪60年代,Lions和Stampacchia创立了变分不等式理论。80年代以来,作为现代偏微分方程理论重要部分的变分不等式理论得到了广泛的发展。变分不等式理论被广泛应用于研究力学
算子级数赋值收敛现在已经成为内容丰富,应用广泛的级数研究方向之一。在众多的研究中,李容录和王富彬最近提出映射级数赋值收敛最强内涵的问题,并对经典Banach序列空间的情形获
一个阶数为v,指标为λ的有向烛台形t-设计DCSλ(t,K,v)是一个四元组(X,S,G,B),其中X是一个v元集;S是X的一个s元子集(称作干);G是由XS的一些非空子集构成的集合(其元素称作组),且划分XS;B是X
置换是一类在密码算法中使用相当广泛的密码学函数,构造具有良好密码学性质的置换是设计好的密码算法的重要需求之一。 MD5是国际上通用的两大Hash函数之一,它被广泛应用于
计算机断层扫描成像技术(CT),尤其螺旋CT在医学和工业以及其他无损检测领域得到了广泛的应用。在医学影像领域,追求最小剂量的辐射已成为关心人类健康的首要目标。低辐射剂量CT
在第一章中,我们列出了本文要证明的几个主要结论.在第二章中我们证明了极小元uε的W1,p强收敛性,并刻画了它的极限函数:当拓扑度为零时,具系数的p-调和映射恰是具系数的p-能量极