金属有机骨架/聚偏氟乙烯杂化膜的制备及对生物酶的固定研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:shuiqianzeqing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
酶固定化是提高生物酶稳定性,扩展生物酶催化技术的重要课题。金属有机骨架(MOFs)化合物具有大的比表面积、超高的孔隙率、可调的框架结构以及孔隙大小,聚偏氟乙烯(PVDF)是一种性能优异的聚合物多孔膜,具有良好的生物相容性。将MOFs与聚合物多孔膜相结合,开发新的生物酶固定载体材料在酶固定工程领域具有重要意义。本文成功制备了沸石咪唑酯骨架(ZIF-8)掺杂的聚偏氟乙烯(PVDF)杂化膜(ZIF-8/PVDF杂化膜),用于纤维素酶固定。分别采用三种不同的杂化方法,包括机械混合方法(A),氨化后的自组装(B)和配体官能化后的自组装(C)制备具有不同负载量的ZIF-8/PVDF杂化膜材料。应用场发射扫描电子显微镜(FESEM),X射线衍射(XRD),傅里叶变换红外光谱(FT-IR)和热重分析(TG)等手段研究了 ZIF-8/PVDF杂化膜的形貌、晶体结构和表面性质。通过测量表面水接触角来表征杂化膜的疏水/亲水性质。纤维素酶的固定化试验表明,与纯PVDF膜相比,ZIF-8/PVDF杂化膜对纤维素酶的平衡吸附能力均大大提高。其中,ZIF-8/PVDF(A-2)具有最佳的吸附性能,相当于PVDF原膜吸附量的1.2倍。与游离纤维素相比,固定化酶保持了较好的活性,同时显著提高了对pH值,温度和储存天数的稳定性。MIL-101(Cr)是一种基于对苯二甲酸和Cr3+的MOF材料。本文通过物理掺杂制备MIL-101(Cr)/PVDF复合膜,并用于对过氧化氢酶的吸附实验中,对于过氧化氢酶的最佳吸附条件进行优化:pH=5,吸附时间t=60min,离子强度c(NaCl)=0 mol/L及温度T=40℃,MIL-101(Cr)/PVDF杂化膜对过氧化氢酶的最大吸附量为81.13μg/cm2。吸附动力学拟合结果表明,MIL-101(Cr)/PVDF对过氧化氢酶的吸附更适合拟二级动力学结果,且等温吸附模型拟合更符合Langmuir等温模型。对固定化酶的活性测试实验表明,MIL-101(Cr)/PVDF复合膜对过氧化氢酶的固定化保持了纤维素酶的催化活性,并相对提高了过氧化氢酶对pH条件和温度的稳定性。
其他文献
工程结构参数通常存在不确定性,包括几何参数、材料属性和载荷激励等。特别的这些参数不确定性通常以耦合形式存在,并随着结构性能模型的演化不断发生变化,进而直接影响广泛存在整个寿命周期的。由于这些不确定性的存在会使得退化结构的时变可靠性结果以及基于年龄替换策略的成本优化结果存在一定程度的不必要的误差。这对于制定如道路、桥梁、核电站和输电线路等这些基础设施系统生命周期管理的最佳策略的影响是十分显著的,甚至
F-2毒素又称玉米赤霉烯酮(Zearalenone),因其具有类雌激素作用会引发畜禽的雌性激素亢进症,进而干扰繁殖相关性能。而单宁酸(Tannic acid)是广泛存在于自然界中的多酚物质,特殊的药理活性和结构上的多重性使其具有抗炎、抗病毒、抗肿瘤等特性。目的:本实验以昆明小鼠为研究对象,探讨单宁酸对F-2毒素致小鼠卵巢损伤的保护作用及可能的作用机制,从而为将单宁酸在开发为F-2毒素解毒剂提供实验
目的:在中医理论的指导下,运用现代科学技术进行药效及相关指标的检测研究,从而进一步观察其疗效,明确其解热效果,探讨中药药浴的解热途径,为中药药浴的研究与应用提供更科学、更客观的实验室依据。方法:运用干酵母诱导大鼠发热模型,定时测量大鼠体温并记录体温变化,观察中药药浴的解热效果。运用ELISA方法检测发热大鼠下丘脑组织c AMP、下丘脑组织PGE2含量和血清中c AMP、血清PGE2含量,分析中药药
药品质量管理是指通过质量策划、质量分析、质量改进、质量控制来实现药品质量目标的全部活动,药品物流服务质量改进是其中重要的环节之一,物流组织方式、管理制度、工艺技术、作业流程对于药品在流通环节的有效性、安全性、稳定性等具有显著影响。六西格玛管理作为一种综合性的理论体系和管理方法,能够有效地改善药品物流作业的薄弱环节,解决药品配送误差率和客户投诉率高等问题。因此,探讨基于六西格玛的药品物流服务质量改进
随着我国经济的快速发展,城市人口密度也在不断增加,传统的地面出行变得更加拥堵,而广阔的地下空间有待开发利用,这便促使地铁等交通方式得以大范围发展。目前,地铁建设主要依赖于盾构掘进技术,在盾构机的掘进过程中,刀具的磨损是不可避免的,若不及时更换,则会影响施工效率,严重的话可能会造成器械的损坏。传统的更换方式为以人工进行刀具更换,这样的更换方式不仅效率低下,而且还伴随着对人身造成伤害的危险性。所以,以
为了适应市场对多品种,多规格,高附加值产品的需求,现代工业生产过程正朝着大型和集成化方向发展。随着生产规模的扩大以及复杂性的增加,采用合理的过程监测方法来保障复杂工业过程的安全稳定运行及连续稳定的产品质量已经逐渐成为过程控制领域的首要任务。随着计算机技术与仪表技术的迅速发展,工业生产过程中大量的生产数据被存储下来,由此,基于数据驱动的过程监测与故障诊断方法得到了广泛的研究与应用。基于数据驱动的过程
低温等离子体在传统和新兴工业领域有着越来越突出的地位,其中射频等离子体作为一种重要类型的等离子体也受到人们的广泛关注和深入研究。射频离子源在许多现代工艺领域如表面改性、晶圆刻蚀和薄膜沉积等相关领域有着越来越普遍的应用。特别是在现代薄膜制备技术中,离子束溅射具有污染小、易于精确控制成膜条件、离子束能量与束流可以独立并精确控制、有利于获得较高质量的薄膜等优点。在一般的等离子体放电中,等离子体的高密度和
偶氮液晶高分子由于其具有特殊的光致异构和光致变色等光学性质,在光信息贮存材料、光开关材料和非线性光学设备材料等领域具有巨大的应用潜力,近年来得到了国内外研究者的广泛关注。本文分别合成了一种胆甾醇液晶单体M1,一种单酚单体M2,两种含氰基单体M3、M4,一种偶氮液晶单体P。利用M1和M2共聚得到MPA系列聚合物,再利用M1、M2与M3和M4共聚得到MQA和MRA系列聚合物,其中MPA、MQA和MRA
真空感应熔炼气雾化制粉技术(VIGA)是目前在工业生产中应用最为广泛的制备金属(合金)粉末的方法,VIGA所制备的金属粉末具有纯度高、球形度好、含氧量低等优点。然而常规的实验手段很难对气雾化整个熔体破碎过程进行表征,也很难再现冲击破碎的复杂物理过程。数值模拟可以实现对气体轨迹、金属熔体的破碎等过程的可视化重现。本文采用ANSYS Fluent 19.0软件计算流体力学CFD方法,数值模拟真空感应熔
随着通信、人工智能和机器视觉等领域的不断突破进步,对于机器人技术的相关研究不断向更深更高层次发展,而家用服务机器人作为面向家庭工作环境的智能化机器人,在未来进入千家万户服务家庭已成为必然的发展趋势。如何使机器人有效的识别人的姿态与动作,帮助其更好的主动“感知”与“认知”人的行为一直是学界所研究的重要问题。与单张图片中的形态检测不同,行为识别任务主要探究如何感知在一段连续的视频流中某一对象乃至多个对