论文部分内容阅读
遥感图象在成像过程中,会受到模糊、噪声和云雾等因素的干扰,使图象质量退化,细节丢失,分辨率降低。同时,由模数(A/D)变换过程中欠采样所引起的频率混叠,会使图象高频信息丢失,产生频谱畸变,从而进一步降低图象的分辨率。图象复原与超分辨的任务就是尽最大可能地消除由这些因素所引起的图象质量退化,提高其清晰度、对比度和分辨率。本文在不改变成像系统硬件条件的情况下,力图通过地面处理的方法对遥感图象复原与超分辨并行系统设计及其算法实现技术进行创新性研究,探索能够快速高效地提高遥感图象分辨率的新技术。遥感图象复原与超分辨并行系统设计及其算法研究的内容主要分为硬件和软件两个部分,其中硬件部分包括体系结构的选择和硬件系统的构建,软件部分包括并行算法模型的建立、并行算法的实现及其性能优化。目前,并行技术的应用已遍布图象处理的各个领域,但其本身尚存在许多未解决的难题,如系统底层硬件差异大、代价高,算法标准不统一、移植性差等,阻碍了其应用和发展。对图象并行体系结构的研究是并行算法设计的基础,可实现算法到结构的最优转换。本文结合具体的算法和应用,对多种基于计算机和DSP的图象并行处理系统进行详细的分析、分类和对比,指出通用化和结构融合是图象并行处理系统发展的趋势,通用系统目前主要基于DSP和机群两种体系结构。其中,DSP适合于小规模图象并行处理的快速响应,而机群则适合于海量大尺度遥感数据的实时处理。在此基础上,利用图象复原与超分辨算法在两种结构上进行了实验分析和规模预测,结果表明采用DSP结构设计的硬件系统规模太大而难以进行管理和应用,因此选择机群作为系统实现结构。在基于机群的系统结构基础上,结合图象复原与超分辨算法的特点,可将图象复原与超分辨的并行硬件系统设计为由胖节点、Infiniband交换机和光纤磁盘阵列等设备组成的SMP机群系统。在该系统上,采用基于细粒度并行化的OpenMP与MPI相结合的混合编程模型,可以充分发挥OpenMP节点内细粒度并行和MPI节点间粗粒度并行的综合优势,获得较好的并行性能。本文随后建立该系统性能模型的表达式,给出处理器个数和系统加速比、效率之间的关系。对该模型的深入分析表明,处理器数目的增加存在限制,若超出该值,由此带来的通信开销的急剧增大将掩盖新加入处理器的贡献,反而会使系统性能降低。并行处理技术发展的现状是软件远远滞后于硬件,因此对图象复原与超分辨并行算法实现技术的研究具有重大意义。本文通过对并行算法设计中影响其性能的负载、通信和I/O三大因素进行深入研究,建立表征通信代价的数学模型。根据该模型,对固有通信、附加通信、开销、延迟和冲突等产生的机理进行了讨论,指出合并通信是一个很好的优化策略,它能在提高通信性能的同时有效避免竞争和冲突。然后,根据I/O系统的结构,建立对应的抽象层次模型,给出各层的优化策略。最后根据图象复原与超分辨并行算法的特点,对其域分解方法进行研究,建立一种基于PPCTS结构的并行算法模型。在已建立的遥感图象域分解方法和基于PPCTS算法模型的基础上,可进行图象复原与超分辨并行算法的设计。在图象复原部分,本文提出一种基于PDE的并行扩散去噪算法,而在图象超分辨部分,则提出一种频域扩展与补偿并行超分辨算法。其中,基于二阶PDE的并行扩散去噪算法是建立在对PDE去噪相关理论和并行化技术深入研究的基础上,主要用来快速去除遥感图象中广泛存在的高斯白噪声和泊松噪声,实验结果表明该算法能够在滤除噪声的同时保护图象的边缘,其处理效果好、速度快,能够满足实时应用的需求。而频域扩展与补偿并行超分辨算法能够快速地解开频率混叠,进一步提高图象的分辨率,它在融合单帧频域内插与增强技术和频率补偿滤波器的基础上,对算法中计算量最大的FFT和矩阵相乘算法进行了并行化,因此不但能消除遥感图象中可能引起振铃现象的频率突变,拓展频谱,提高图象的清晰度、对比度和分辨率,还能够大幅度提高算法的处理速度。在具有4个处理器的并行机上进行的测试表明,两种算法的加速比都可达到3倍以上,并行效率高于75%,同时都具有较好的可扩展性。在使用2个处理器时,并行效率最高可达92.9%。