论文部分内容阅读
聚异丁烯(PIB)因具有优异的化学稳定性、气密性以及对人体无毒无害等性能而被广泛应用,目前已经开发了各种以聚异丁烯基为主体的多功能弹性体。随着医疗技术的不断进步,使用聚合物作为体内植入物已经是常规操作,其中聚异丁烯片段优异的生物稳定性正越来越受到人们重视,聚异丁烯基生物医用材料的开发具有重要的意义和应用价值。本文合成了两种阳离子引发剂2,4,4-三甲基戊烷(TMPC1)和5-叔丁基-1,3-二(1-甲基-1-甲氧基乙基)苯(HDCE),采用共引发剂TiC14分别与两种主引发剂络合引发异丁烯(IB)聚合,并添加质子捕捉剂2,6-二叔丁基吡啶(DTBP)以保持反应的活性,主要探究了不同引发体系下异丁烯阳离子聚合时的反应规律及活性特征;研究了异丁烯和4-乙烯基苯并环丁烯(4-VBCB)的无规和嵌段共聚反应规律,提出了异丁烯和4-VBCB无规共聚的反应机理;表征了 4-VBCB热交联后的结构变化以及异丁烯和4-VBCB共聚物在热交联后的热、机械性能变化。研究结果表明:①TMPCl/DTBP/TiCl4引发体系下异丁烯聚合反应的转化率在90min时可达96%,随着IB反应转化率的增大,聚异丁烯的分子量也在增大,二者大致呈线性关系,同时聚异丁烯的分子量分布在1.20~1.35之间变化;TMPCl/DTBP/TiCl4体系引发的异丁烯和4-VBCB的无规共聚反应不具有活性,随着4-VBCB的投料量增大,无规共聚产物的分子量减小,同时分子量分布反而增大;计算了 IB和4-VBCB无规共聚反应的单体竞聚率,分别为r1=0.47,r2=2.08;提出了 IB和4-VBCB无规共聚的反应机理,即4-VBCB相比于IB更容易从活性聚合链得到质子成为新的活性中心,从而导致链转移,聚合物链中的4-VBCB链段同样会发生自身耦合造成链转移反应。②HDCE/DTBP/TiCl4体系引发异丁烯聚合反应的转化率在50min时可达96%,聚异丁烯的分子量与单体IB的转化率同样呈线性关系,分子量分布在 1.10~1.20 之间,TMPCl/DTBP/TiC14和 HDCE/DTBP/TiCl4两种引发体系均实现了阳离子可控聚合,HDCE/DTBP/TiCl4体系的引发效率高于TMPCl/DTBP/TiC14;以 HDCE/DTBP/TiC14为引发体系成功合成了 IB 和4-VBCB 的嵌段共聚物 p(4-VBCB-b-IB-b-4-VBCB);在IB 和 4-VBCB 嵌段共聚的基础上引 入苯乙烯,成功合成了P(styrene-block-4-VBCB)-PIB-P(styrene-block-4-VBCB)三元嵌段共聚物,通过增加苯乙烯的投料量可以增大共聚物的分子量,从而间接达到调控整个共聚物分子链的玻璃化转变温度的目的。③将聚合物在250℃下以固态形式加热的方式实现了共聚物的交联,对交联后的共聚物分别作核磁共振氢谱、碳谱和红外光谱表征,三种谱图中都发现了交联形成的八元环结构;通过DSC和TGA测试分析得到,共聚物在经热处理交联后,其玻璃化转变以及热分解温度增大;共聚物的交联强度会随着热处理时间的增大而增加,在热处理大约30min后交联强度不再有大的变化;共聚物的强度在交联固化后有大幅度的提高。