论文部分内容阅读
作为一种高效传热元件,重力热管己经在能源领域得到了应用,并体现出良好的综合性能。我国地热资源以中低温地热为主,为了更好地将重力热管应用于低温地热资源中,促进资源的高效可持续利用,本论文针对填充了二氧化碳和纳米颗粒混合工质的新型重力热管,分别搭建了对流型地热系统实验台和传导型热储实验台,重点实验研究了外部工作条件以及结构尺寸对新型重力热管传热性能的影响规律。
在对流型地热系统实验中,主要研究的影响因素包括热源温度、热水体积流量、冷源温度、冷水体积流量以及热管自身的长度、直径和外翅片,得到了如下结论:从增加传热量来考虑,在一定范围内增大热源温度及热水体积流量、降低冷源温度、增大冷水体积流量和增设外翅片都是有效的手段;考虑在不同工况下热管的整体热阻和等效对流换热系数,增大热水体积流量、降低冷源温度和增大冷水体积流量都能够起积极作用,但热源温度的升高会增大整体热阻和降低等效对流换热系数;将长度L=1600mm、2000mm,管径D=51mm、89mm、110mm的六根热管进行对比可知,L/D=1600mm/89mm的热管最有利于传热性能的发挥;D=51mm的两根热管传热量不足,在实际应用中最不为推荐;D=110mm的热管更为适合热输入较大的情况。
在传导型热储实验中,主要研究的影响因素包括热储体积含水率、热源温度、冷源温度以及冷水体积流量,得到了如下结论:传导型热储的热传导性能是限制热管的传热性能的最关键因素。增大热储的体积含水率对热管传热量的改善最大;增加热源温度也有利于传热量的提升;在大部分情况下,增加冷水体积流量和降低冷源温度都有利于热管传热量的提升,但当热管在热储体积含水率0%的工况下工作时,由于增大冷水流量不能够改善蒸发段的热量输入,仅提升了冷凝段的对流换热强度,所以会使得热管的传热量降低。
在实际工程中,对于两种类型的地热资源利用,需要结合重点影响因素和生产需求,选择最为合适的热管型号,保证成本与性能的协调性。
在对流型地热系统实验中,主要研究的影响因素包括热源温度、热水体积流量、冷源温度、冷水体积流量以及热管自身的长度、直径和外翅片,得到了如下结论:从增加传热量来考虑,在一定范围内增大热源温度及热水体积流量、降低冷源温度、增大冷水体积流量和增设外翅片都是有效的手段;考虑在不同工况下热管的整体热阻和等效对流换热系数,增大热水体积流量、降低冷源温度和增大冷水体积流量都能够起积极作用,但热源温度的升高会增大整体热阻和降低等效对流换热系数;将长度L=1600mm、2000mm,管径D=51mm、89mm、110mm的六根热管进行对比可知,L/D=1600mm/89mm的热管最有利于传热性能的发挥;D=51mm的两根热管传热量不足,在实际应用中最不为推荐;D=110mm的热管更为适合热输入较大的情况。
在传导型热储实验中,主要研究的影响因素包括热储体积含水率、热源温度、冷源温度以及冷水体积流量,得到了如下结论:传导型热储的热传导性能是限制热管的传热性能的最关键因素。增大热储的体积含水率对热管传热量的改善最大;增加热源温度也有利于传热量的提升;在大部分情况下,增加冷水体积流量和降低冷源温度都有利于热管传热量的提升,但当热管在热储体积含水率0%的工况下工作时,由于增大冷水流量不能够改善蒸发段的热量输入,仅提升了冷凝段的对流换热强度,所以会使得热管的传热量降低。
在实际工程中,对于两种类型的地热资源利用,需要结合重点影响因素和生产需求,选择最为合适的热管型号,保证成本与性能的协调性。