论文部分内容阅读
市政工程中的燃气、排水管道经长期使用后会出现损蚀、变形甚至断裂。为保障管道安全,管道机器人研究逐渐兴起。其中,迈动式蠕动管道机器人具有优良的解耦性、锁止性和适应性,在管内牵引检测设备时能够实现支撑力和前进阻力解耦。但是,迈动式管道机器人的多驱动分散布局大大增加控制和维护难度,因此急需开展集约驱动式迈动管道机器人行走机构、自适机构设计与特性研究。如何减小管道机器人的驱动数量,降低机器人的控制复杂度,提高机器人的支撑稳定性,已成为亟待解决的关键问题。基于此,本文采用机构设计、理论分析、仿真模拟和试验验证相结合的方法,以“集约驱动、精准协调、双向迈动、稳定支撑”为设计目标,系统深入地开展管道机器人迈动行走机构、恒力自适机构设计理论建模等关键问题研究。本文的主要内容及贡献归纳如下:深入概括现有各类蠕动管道机器人,提出基于驱动数的分类方法。以实现管道机器人集约驱动和精准协调为目的,针对迈动式管道机器人的多体动作协调问题,基于TRIZ理论和机构学创新方法,提出单驱动双向迈动式机器人,避免多驱动分散布局和协同控制。设计单输入多输出传动机构,实现各分体动作精准协调同步,避免相对超前或滞后动作。为避免弹簧和低副机构组合设计的局限性,从低副向高副过渡,建立被动凸轮和拉簧组合约束模型,提出被动移动凸轮式(PSC)和被动转动凸轮式(PRC)两类恒力自适方案,以满足变径约束下稳定支撑特殊工况要求。详细设计单驱双向迈动管道机器人结构参数,将概念方案设计具体化,提出一系列指导设计准则。基于机构变异和机构倒置创新方法,依据迈动机构变异和轴向运动时序关系,提出凸轮连杆式CLR和多凸轮组合式CCR两类迈动机器人,并分别进行结构参数设计和分析,获得机器人迈动行走规律。分析表明,CLR能够实现不完全变异下的非全连续强约束迈步式行走,CCR能够实现完全变异下的全连续强约束迈步式行走,由于凸轮机构的高副特点以及CCR的完全变异运动,CCR轴向动作规律的设计灵活性和定位准确性优于CLR。对迈动机器人进行外部约束分析,基于管道约束特征推导机器人外部参数约束方程,提出n阶对称凸集圆柱包络模型以避免管内干涉,有效提升管内空间利用率和设备容积率。系统研究管内被动恒力自适机构所满足的几何位形及本构关系,以实现变径约束下的稳定自适应支撑和减少驱动为指引,提出不依赖传感器、控制器的拉应力约束PSC被动恒力自适机构,解决现有主动支撑机构能耗大、控制复杂、多线路动扰约束等问题。提出基于轮廓控制法的PSC恒力自适理论,推导并获得PSC理论廓线解析解,揭示PSC廓线满足椭圆形式本构方程这一重要规律,避免复杂编程和数值计算,为实现解析计算下恒力自适提供新方法和新机构。以实现紧凑布局下的稳定支撑为目的,提出拉应力约束PRC被动恒力自适机构,有效避免被动凸轮移动自锁,建立摆动凸轮和拉簧物理系统约束微分方程,基于Runge-Kutta数值算法获得PRC廓线数值解,为紧凑型恒力自适机构设计提供新方法和新理论。深入分析行走机构力学特性及自适机构输出性能,以运动学分析为基础,进行机器人稳态及动态力学特性研究,获得机器人输入输出力学关系及特性曲线;提出管道机器人牵引能效比概念,进行CCR牵引能效比分析,结果表明相对于同构三驱机器人,所提出的单驱CCR牵引能效比提高至两倍以上。对CCR动态特性进行仿真研究,获得机器人避免管内锁止失效的临界最大凸轮转速。基于所提出的PSC和PRC恒力自适机构设计理论,开展恒力自适机构建模和输出特性仿真研究,获得目标输出精度所对应的临界最大摩擦系数,PRC机构输出力受摩擦影响较小,对摩擦的鲁棒性较好,因此选择PRC机构作为最佳构型。成功研制CLR和CCR两代机器人原理样机,基于OMRON PLC、MCGS触摸屏、无线遥控及驱动模块等,构建人机交互式控制和试验系统。试验表明,控制单电机正反转能够实现机器人双向迈动行走,单电机驱动方式使拖缆数量大大减少。机器人可同时适用于圆形和矩形截面行走环境,为不同截面管道应用以及迈动行走控制简化提供参考。以所提出的PRC自适机构设计方法和理论分析为指导,研制PRC自适机构样机,试验表明当管径变化时输出力变化趋势整体呈水平分布,与仿真输出力变化趋势一致,验证了理论方法的正确性和实际有效性,为工程设计及应用提供理论依据。该论文有图123幅,表27个,参考文献155篇。