一种基于先验知识的电信网络故障场景识别方法

来源 :吉林大学 | 被引量 : 0次 | 上传用户:asd123123liu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着电信网络的不断发展,尤其是5G网络的普及,进行有效的网络故障管理的难度越来越高。为了应对网络故障管理中出现的困难,故障场景识别任务应运而生。其目标是基于告警数据对网络中存在的故障场景类型进行识别。有效的故障场景识别能够推动有效的故障恢复。目前,故障场景识别的相关研究主要集中在工业界。其中,基于规则的识别方法是最常见的。然而,这种方法并不能对故障场景进行准确、有效的识别,其对网络故障管理的优化程度十分有限,主要原因如下:首先,基于规则的方法在处理告警信息时可能会面临规则与匹配信息无法匹配的问题;其次,在设计规则的过程中,规则设计人员难以保证新设计的规则与规则库中的规则不存在冲突。最后,一次性的规则设计难以覆盖所有的故障场景,构建完成的规则库需要不断的更新,以此应对电信网络中千变万化的故障场景。为了解决基于规则的方法所面临的问题,本文提出了一种名为“知识增强图神经网络(KE-GNN)”的有效的故障场景识别方法。该方法是第一个将图神经网络(GNN)和专家知识相结合的故障场景识别方法,其目的是整合基于规则(知识)的方法和基于GNN方法各自具有的优势。在设计该方法的过程中,本文主要进行了如下三个方面的研究:(1)本文设计了一个基于命题逻辑的知识表示方法,得到的知识表示可以通过一个编码器映射到一个知识空间中。(2)本文设计了一套“师生机制(Teacher-Student Scheme)”,该机制可以最小化GNN的预测结果和样本标签对应的知识表示之间的距离,进而能够使知识指导GNN的训练,并增强GNN的识别效果。(3)本文收集了三份来源于真实场景的电信网络故障场景数据。三份数据在经过人工打标签的过程后被用于评估故障场景识别方法的实验设计中。在三份数据集上,本文做了充分的实验,目的是评估KE-GNN方法的具体性能。实验结果表明,相比于其他的方法,本文提出的KE-GNN方法能够达到最优的性能,平均的准确率提升为7.86%。此外,当训练样本数据较少或将一个已训练的KE-GNN方法直接应用到一个新的具有不同拓扑结构的网络局点时,KE-GNN方法仍然能够达到最优的效果。
其他文献
多取代吡咯和噻唑类化合物具有抗病毒、抗炎、抗肿瘤活性,本身可作为药物使用,亦作为药物合成的中间体,在药物、农药领域有广泛的用途。迄今为止,尽管这两类化合物的合成研究已有很多文献报道,但电化学方法合成这两类化合物的研究工作非常有限,发展绿色有效的电化学合成这两类化合物仍然是非常意义的。鉴于此,本论文着眼于研究电化学合成方法,合成这两类重要化合物。(1)以β-二羰基化合物、醛和胺底物合成多取代吡咯化合
学位
车辆安全驾驶一直是交通领域重要的研究课题,自动驾驶车辆由于减少驾驶员的参与,可以避免大部分由人为因素造成的交通事故,提高驾驶安全和驾驶效率。在驾驶行为研究中,车辆跟驰行为和换道行为是最常见也是最基本的两种驾驶方式,有调查显示由于不合理换道引起的事故占比较高,而智能网联自动驾驶车辆换道行为研究有助于避免该问题的产生。结合国家科技部项目“车车耦合机理与协同安全方法”(项目编号:2018YFB16005
学位
由于人们对气候问题越来越关注,迫切希望能够减少化石燃料的使用,以降低二氧化碳排放量,多年来,人类一直在寻找更清洁、可持续的燃料。在众多可再生能源中,氢能以其高热值、无污染一直备受关注,尤其是现在,氢能将迎来前所未有的发展空间。考虑到氢化酶能够在温和的条件下高效地完成氢气生成和氧化,为此我们选题为:镍、铜、锌、铁、钯配合物的合成与催化氢气生成及氧化性能的研究。本文主要研究内容如下:1、设计并合成了6
学位
符号网络是大数据时代的一种数据表现形式,由节点、节点间正负链接组成。符号网络中的任务在现实生活中有非常广泛的应用,如链接预测、社区发现、节点分类等。但符号网络的节点和链接需要高维向量表示,导致模型计算复杂的问题。表示学习是一种非常有效的学习节点嵌入方法,通过保留网络中拓扑结构、顶点内容和其它辅助信息,将网络顶点嵌入到低维向量空间中。所以用表示学习方法可以将符号网络任务中所需的信息提取出来,用低维向
学位
精准识别癌症患者的分子亚型对癌症的个体化治疗、靶向药物研发和预后分析具有重要意义。大规模多组学数据和基于数据驱动的方法能够促进对癌症分子分型的理解和预测。现有大多数基于机器学习的方法通常依赖于单一组学数据,而未能整合多组学数据为分子分型提供更全面的信息。一些基于神经网络的方法,考虑了分子分型的复杂非线性,但忽略了基因特征筛选和样本之间的关系。图神经网络能够利用样本相似性图中样本之间的信息传递和聚合
学位
关系抽取指从非结构化文本中抽取出实体间的关系,是自然语言处理中重要的研究方向。在深度学习时代,监督学习下的关系抽取模型已经取得很高的准确度,但其要求大量带标注的训练语料,然而在现实世界中关系种类繁多,文本数据复杂,提供大量的带标签的训练数据需要耗费巨大的人力。针对以上问题,远程监督的思想被提出,它基于一个假设,如果知识库中存在两个实体表达了某种特定关系,那么语料中所有含有这两个实体的句子都表达了这
学位
牡丹皮,又称丹皮,是毛茛科植物牡丹Paeonia suffruticosa Andr.的干燥根皮,广泛应用于中药名方。现代药理学研究表明,牡丹皮具有调节血糖、缓解糖尿病并发症、抗炎等多种药理作用。多糖作为一种水溶性大分子,其在传统中药水煎液中占据很大的比例。研究报道,多糖具有多种生物活性,如免疫调节作用、调节肠道菌群、抗炎、抗肿瘤、抗氧化应激等。多糖也是牡丹皮的主要活性成分之一,目前对于牡丹皮多糖
学位
近些年多智能体强化学习的相关研究备受关注,其中值分解问题的相关研究引起了研究者的广泛重视。在多智能体值分解方法中,为提高多智能体策略的性能,环境整体的行为值函数可以表示为每个智能体值函数的组合。然而,目前的值分解方法中主要存在两方面问题:(1)值分解相关算法模型存在学习效率较低的问题,而算法的学习效率是重要性能指标,提高模型学习效率具有重要的研究价值;(2)值分解相关模型存在探索能力不足的问题,而
学位
数字切片扫描技术和高性能运算硬件的不断完善促进了深度学习方法在组织病理学领域的广泛应用。现有工作主要基于多示例学习框架,使用卷积神经网络实现对病理切片的分析。然而,这些模型在分析病理切片方面的性能不佳,主要原因包括:1)卷积神经网络的模型参数过大;2)多示例学习中使用全切片图像级别的标注带来的噪声干扰。为了构建高效轻量化模型对病理图像进行分类的同时减弱噪声标签的干扰,本文提出了一种融合多尺度信息的
学位
高良姜是一种香气独特的药食同源植物,富含黄酮和活性多糖,其提取物具有强黄嘌呤氧化酶抑制(XOI)活性,在功能性食品领域运用的思路有待拓宽。鲣鱼是活性肽制备的优质原料,其酶解物已被报道具有降尿酸、降血压和抗氧化等活性。然而鲣鱼肽经深度酶解通常具有腥苦味明显的风味缺陷。本研究综合考虑高良姜和鲣鱼肽的物化性质,旨在探明利用高良姜改善鲣鱼肽品质的最适途径,优化得到高良姜风味富肽食品基料制备的最佳工艺,揭示
学位