论文部分内容阅读
在经典分析力学理论中,哈密顿-雅可比方法是求解保守完整约束系统哈密顿正则方程的重要手段。这种积分方法有其独特的优点,很多用哈密顿-雅可比方法可以求解的问题用别的方法是解不出来的。由哈密顿-雅可比方法的几何解释可以看出,这种方法的适用范围并不仅仅局限于保守完整约束系统。本文将基于现代微分几何理论研究非保守系统和线性非完整约束系统的哈密顿-雅可比方法和场方法,具体包括以下几方面的内容:(1)基于Frobenius定理对哈密顿-雅可比方法给出了一种新的几何解释。由此说明哈密顿-雅可比方法本质上是通过寻找一个合适的映射φ把力学系统余切丛T*Q上的矢量场Y推前为高维流形上的一个可积矢量场φ*Y。只要能够做到这一点,则把推前后的矢量场φ*Y的积分曲线拉回就可得到矢量场Y上的积分曲线。并指出这种“化简为繁”的解决问题的方法的适用范围不会仅仅局限于求解完整保守的哈密顿问题。(2)研究了积分非保守系统哈密顿方程的哈密顿-雅可比方法。给出了求解主动力为Fi=μ(t)pi的非保守哈密顿系统运动方程的哈密顿-雅可比方法。并且证明这是唯一可用形如(?)在哈密顿-雅可比方程求解的非保守问题。(3)发现并验证了一阶线性映射的可积性不是映射所得空间无挠性的必要条件。这意味着我们可以通过隐含约束的一阶线性非完整映射映射出线性齐次非完整约束系统的用准坐标所描述的Riemann位形空间,从而实现线性齐次非完整约束系统的准正则化。这种准正则化的几何实质在于,位形空间X上的一阶线性非完整映射可以诱导出一个余切丛T*X上的非完整映射,并由此在余切丛T*X中映射出了一个具有辛结构的浸入子丛。(4)提出了适用于线性齐次非完整约束系统的哈密顿-雅可比方法。即通过构造线性齐次非完整约束系统的隐含约束的合适的一阶线性非完整映射实现系统的准正则化,将系统的运动方程用准坐标和准动量表示成哈密顿正则方程形式,由此就可以自然地把哈密顿-雅可比方法推广至线性齐次非完整约束系统的研究中。(5)改进了 Vujanovic场方法。和哈密顿-雅可比方法类似,Vujanovic场方法把求解常微分方程组特解的问题转化为了寻找一阶偏微分方程(即基本偏微分方程)完全解的问题。由于场方法在应用时没有像经典哈密顿-雅可比方法那样强的限制条件,所以可以应用至非保守问题和非完整问题的研究中。但Vujanovic场方法依赖于求出基本偏微分方程的完全解,而这通常是很难实现的,这就极大地限制了 Vujanovic场方法的适用范围。本文将求解常微分方程组特解的Vujanovic场方法改进为寻找动力学系统第一积分的场方法。改进后的场方法不再要求必须求出基本偏微分方程的完全解,从而扩大了场方法的适用范围。(6)研究了改进后的场方法在线性齐次非完整问题中的应用。即首先通过隐含约束的非完整映射将系统所受线性齐次非完整约束几何化,得到系统在其Riemann-Cartan位形空间中的运动方程,然后应用改进后的场方法就可以找出系统的若干个第一积分。