论文部分内容阅读
人脸和虹膜融合识别兼具人脸识别的易用性和虹膜识别的高精度,能为用户提供舒适安全的使用体验,具有广阔的应用前景。在复杂多变的实际应用场景中,成像装置经常采集到许多低质量的人脸和虹膜图像,因而亟需有效的人脸和虹膜图像预处理方法来提高系统的精度和鲁棒性。本文基于人脸和虹膜融合识别原型系统,研究人脸图像对齐和虹膜区域分割等关键问题,提出对光照、遮挡和噪声等干扰鲁棒的人脸和虹膜图像预处理算法。本文的主要工作和贡献如下: (1)提出了基于半二次优化的鲁棒人脸图像对齐框架。在该框架下,讨论了经典的迭代加权最小二乘算法与乘性形式半二次优化之间的相似性,并揭示了l1损失与Huber损失之间的内在关系。分析结果有利于深入理解当前基于稀疏误差假设的人脸对齐方法,并促进新算法的开发。 (2)基于图像分解,提出了由粗到精的单样本人脸图像对齐方法。在粗对齐阶段,使用公共亮度基图像对测试图像的亮度成份进行估计,并得到粗略的对齐结果。在精对齐阶段,利用图像的细节信息得到更为精确的结果。通过在两阶段中利用两种互补的信息,使算法能处理大的光照和姿态变化。 (3)提出了一系列基于虹膜边界特征的虹膜区域分割方法。利用像素点邻域内灰度、边缘、纹理和结构信息构建了多个虹膜特定边界检测子,从而提高了低质量虹膜图像中虹膜内外边界点和眼皮边界点的检测精度。进一步挖掘了虹膜具有的形状和结构信息:利用轮廓段包含的形状信息,提高虹膜内外边界定位的精度;利用瞳孔区域的形状信息,加快虹膜粗定位,并提高虹膜边界定位的鲁棒性。 (4)提出了基于虹膜表观特征的虹膜区域分割方法。使用多尺度深度卷积神经网络,从图像中自动学习到最具区分能力的虹膜表观特征。该方法通过不同尺度的特征学习,使分类器既具有良好的全局分类能力,又能保证细节区域的定位精度,避免了人工设计特征的局限性,并使用超像素减少测试阶段的计算量,加快分割速度。该方法能精确分割和归一化含有大量噪声的远距离虹膜图像。 总的来说,本文对人脸与虹膜融合识别系统中的人脸图像对齐和虹膜区域分割进行了系统而深入的研究,提高了系统在复杂应用场景下的性能。