论文部分内容阅读
Cu系纳米金属多层膜因其具有良好的导电性与力学性能,广泛用于微电子和微机械领域。这些微电子器件的实际服役环境往往较为恶劣,其中热环境最为典型。由于纳米金属多层膜本身处于热力学不平衡状态,温度变化会引起晶粒尺寸以及界面微观结构特征的改变,出现晶粒长大、界面失稳、层状结构破坏等现象,最终导致材料的失效,严重影响其服役寿命。因此,纳米金属多层膜在热环境下较差的稳定性己成为限制其在高性能器件领域应用的瓶颈。为突破这一瓶颈,确保纳米金属多层膜具有良好的服役寿命和稳定的使用性能,对其热稳定性的研究显得十分必要。本文针对多层膜在微电子领域的需求,设计了一系列特殊结构的Cu/X纳米金属多层膜。采用直流磁控溅射法制备了 fcc/fcc体系的Cu/Ag纳米多层膜,fcc/hcp体系Cu/Ru纳米多层膜和fcc/bcc体系的Cu/Mo、Cu/V纳米多层膜。研究了尺度效应对多层膜热稳定性的影响,主要包括多层膜的微观结构、电学性能和力学性能的稳定性。讨论了多层膜的微观结构和热稳定性之间的关系,特别是异质界面和层内结构与其热稳定性之间的关系,为Cu系金属多层膜的应用提供了实验依据和理论支持,而且对设计和研发热稳定的新型纳米结构—功能型薄膜具有指导意义。主要结论如下:一、Cu/Ag层膜中,异质共格孪晶界面能够提高多层膜热稳定性。利用TEM和XRD研究了单层厚度为2.5~100 nm Cu/Ag纳米多层膜在退火过程中晶粒长大行为和界面结构演化过程。研究发现,当单层厚度小于20nm时,Cu/Ag多层膜层状结构的稳定只能维持在200℃C。当单层厚度大于20 nm时Cu/Ag多层膜表现出良好的热稳定性,可以在300℃退火后维持微结构的稳定,层状结构保持完好,晶粒没有发生长大。透射电镜原位观察发现Cu/Ag多层膜之间的界面以异质外延结构为主,退火过程中热沟槽同时在两种界面中产生,导致与以往不同的微结构演化过程。Cu/Ag多层膜中的晶粒长大过程主要有晶界扩散控制,但是异质共格、半共格界面能够有效抑制晶界的迁移,两者存在相互竞争的关系,最终形成一个稳定的热沟槽角,达到热力学平衡状态,从而抑制晶界迁移阻止晶粒长大,保持多层膜结构的稳定。此外,退火孪晶的形成也显著提高了微观结构的稳定性。二、Cu/Ru多层膜中,随着Cu层厚度的下降,Cu晶粒长大的速度减慢,出现了“越小越稳定”的反尺度效应。利用TEM和纳米压痕研究了一系列不同调制比的Cu/Ru纳米多层膜(固定Ru层厚度3 nm不变,改变Cu单层厚度为5~200nm)的热稳定性。所有尺度的多层膜都能在400℃退火后保持层状结构完整。其中单层厚度为10 nm的Cu/Ru多层膜热稳定性最佳,在400℃退火后晶粒仍然保持在25 nm左右,并且硬度只下降了 6.5%。研究发现Cu/Ru多层膜内大量择优取向的柱状晶能够降低晶粒横向长大的驱动力,Cu-Ru之间的半共格异质界面既具有较低的界面能,又能够有效抑制纵向原子扩散。而Cu/Ru多层膜内柱状晶和共格界面这些特殊界面结构的数量随着尺度的下降而增加,因此在Cu/Ru多层膜内出现越小越稳定现象。在尺度为100 nm的Cu/Ru多层膜中得到最佳电学和力学性能相结合的综合性能。退火后多层膜中的晶粒长大降低了 Cu层中晶界对电子的散射,提高电导率。通过透射电镜原位加热研究了 Cu/Ru多层膜在热环境下的微观结构演化过程,揭示了去孪晶化诱导晶粒长大的过程,阐明了高温下多层膜微结构球状化失效的内在机制。三、Cu/Mo(V)多层膜中,尺度效应引起的界面结构的变化是影响多层膜热稳定性的关键因素。利用TEM和纳米压痕研究了一系列不同调制比的Cu/Mo(V)纳米多层膜(固定Mo(V)层厚度3nm,Cu单层厚度为5~100 nm)的热稳定性。沉积态Cu/Mo多层膜的硬度随着尺度的下降而增强,并在10nm处出现软化,这是由于随着尺度的下降,多层膜晶体结构类型按照多晶向织构向超晶格的趋势变化。而Cu/V多层膜的硬度随尺度下降持续增强,界面产生的共格应力强化是小尺度下强化的主要因素。所有尺度的多层膜都能在400℃退火后保持层状结构完整,也没有发现明显的晶粒长大,说明Cu-Mo和Cu-V界面都能够提高多层膜微结构的热稳定性。Cu/Mo的硬度随退火温度的升高而下降,主要由于非晶层在退火过程中发生晶化。而单层厚度为5 nm的Cu/V多层膜的硬度在退火后增加到5.34 GPa,这是因为退火之后界面处形成Cu-V混合层,增强了界面对位错运动的阻碍作用。小尺度下界面结构演化是影响Cu/Mo和Cu/V多层膜热稳定性的主要因素。