论文部分内容阅读
随着科学技术不断进步,对材料性能提出了更好的要求,碳纤维复合材料由于具有比强度和比刚度高等优点,在航空航天、压力容器、风力发电、船舶、新能源等领域得到广泛应用。然而,纤维复合材料失效机理复杂,包括纤维断裂、基体开裂、界面脱粘和分层失效等,尤其是在使用过程中多种损伤失效相互混合、交叠给检测工作带来很大困难,具有重大的安全隐患。声发射检测技术常用来对碳纤维复合材料损伤进行检测,但声发射常规分析方法的损伤模式识别率低。因此开展损伤物理机制与声发射源的对应关系研究,从声源瞬态波形中提取损伤模态波形特征,并且掌握不同损伤类型的模态变化规律,对实现复合材料损伤声发射动态表征,进而实现在用复合材料容器及设备的损伤状态在线监测与智能评价具有重要意义。本文构建多激励模式声发射信号实验系统,以Lamb波理论为基础,借助经验模态分解和连续小波能量谱实现声发射波形模态分离,并将群速度频散曲线与小波能谱图相关联,实现不同激励声源模态特征识别。利用快速傅里叶变换对分离出的模态分量进行频域转换,得到不同模态的峰值频率范围。针对分离后的模态进行不同传播距离下的频率特征衰减试验,选择峰值频率和中心频率范围为判断指标,得到不同距离、不同激励作用下的频率特征变化情况。以碳纤维复合材料损伤机理为依据,首先针对纤维断裂和基体开裂两种典型损伤类型,设计了纤维束拉断和环氧树脂拉断声发射监测实验,采用特征参量经历关联分析得到两类损伤声发射时域参量的分布范围。并提取得到两种损伤类型声发射信号的峰值频率和能量分布。其次对两种损伤进行模态声发射特性分析,获得纤维断裂损伤和基体开裂的模态波形特征。最后构建了模态特征参量窗幅值TWA(Time Window Amplitude)和窗能量TWE(Time Window Energy),通过时间窗函数进行模态参量特征值提取及时间-载荷经历分析,分析不同载荷下数值变化规律。建立碳纤维复合材料层合板面内弯曲损伤模型,利用H-P失效准则对碳纤维复合材料层合板进行面内弯曲数值模拟,以数值模拟结果为依据,设计面内弯曲损伤声发射监测实验。分析得到复合材料分层损伤声发射信号模态特征。在此基础上,针对碳纤维复合材料容器(气瓶)承压损伤过程,以三维Hashin失效准则为基础,内聚力模型与子层压板相结合进行了多尺度损伤数值模拟,获得纤维缠绕层基体开裂及纤维断裂损伤演化规律。搭建气瓶水压声发射监测实验系统,通过时域参量-载荷关联分析得到气瓶纤维缠绕层典型损伤参量变化趋势和数值范围。以TWA参量为基础提出气瓶损伤信号模态特征判据算法,实现不同模态类型的有效分离,并以分离后的模态参量随载荷的累计计数率实现了不同损伤类型演化趋势的准确表征。在K均值聚类算法对损伤声发射信号预分类处理的基础上,针对损伤信号模态特征设计了以模态上升时间、峰值幅度、峰值频率、持续时间等模态特征参数作为损伤模式识别输入样本,通过主成分分析法将多维输入数据进行空间降维处理,以相关向量机算法为基础构建复合材料气瓶损伤信号模态识别算法,并根据算法进行不同源信号交叉识别有效实现了损伤信号智能模式识别。将分离后的气瓶损伤模态TWE与载荷进行经历分析,得到不同损伤阶段其时域分布规律,并采用最小二乘法对其TWE时间累计计数变化曲线进行数据拟合,提取TWE_b值作为不同损伤阶段的评价参量,结果表明TWE_b值对损伤变化过程较敏感且趋势变化的单一,能够实现气瓶损伤的有效评价。