【摘 要】
:
在大数据网络快速发展及普及的时代背景下,物联网技术,虚拟现实技术,自动驾驶技术,实时在线游戏等新型技术和业务需求也随之迅速增多,新型的网络服务对通信系统的时延、可靠性等提出了更为严格的要求。传统的网络结构中,当用户需要申请某一服务时,网络申请通过边缘网络到核心网络,一直到数据中心进行请求,返回的结果也是从数据中心通过相同路径返回。但这种传输方式的效率在需要追求实时性的业务当中难以解决庞大的数据流量
论文部分内容阅读
在大数据网络快速发展及普及的时代背景下,物联网技术,虚拟现实技术,自动驾驶技术,实时在线游戏等新型技术和业务需求也随之迅速增多,新型的网络服务对通信系统的时延、可靠性等提出了更为严格的要求。传统的网络结构中,当用户需要申请某一服务时,网络申请通过边缘网络到核心网络,一直到数据中心进行请求,返回的结果也是从数据中心通过相同路径返回。但这种传输方式的效率在需要追求实时性的业务当中难以解决庞大的数据流量与更为高效可靠的传输需求之间的矛盾。为了降低数据传输时延,提高网络传输的效率,最为直接的手段则是缩短传输距离。由此,移动边缘网络成为了以5G为代表的未来通信网络技术中一项重要的研究方向。移动边缘网络是指网络中靠近终端而远离数据中心的部分。而移动边缘计算技术是指将互联网技术与通信网络技术结合起来,将互联网中的业务分为必须由数据中心处理的部分和可以下放到边缘网络中进行处理的部分,将存储,计算等业务处理功能下放到边缘网络,只将涉及统计分析,网络安全等必须由数据中心处理的业务进行长距离传输,以达到降低传输时延和网络流量,提高业务处理效率的目的。本文根据移动边缘网络理论,通过优化边缘计算过程中各类网络资源的处理算法与分配流程,提出一系列边缘网络资源分配和管理策略。论文从三个角度进行分析:其一,设计了移动边缘网络各节点间为平衡计算压力,进行计算卸载的策略,利用计算卸载提升边缘节点处到达的计算任务的处理速率。其二,设计移动边缘网络缓存热点内容的策略,利用边缘节点的缓存能力将通信过程中热点访问内容缓存到本地,减少热点内容被再访问时所需时延。其三,利用移动边缘网络与本地终端间的短距离实现对终端设备流量、带宽等通信资源进行实时动态的分配。本文通过对移动边缘网络环境下各类网络资源利用不同策略进行动态分配,设计出完整的资源管理模型,为移动边缘网络构建及设备部署提供理论支撑。
其他文献
合成孔径雷达(synthetic aperture radar,SAR)在军事及民用领域都有广泛的应用。其中,SAR图像目标识别是众多SAR应用中的重要一环。SAR图像目标识别的主要目的与光学图像相似,就是从未知的图像数据中准确地判定目标类型。但是与光学图像数据所不同的是,SAR图像数据由于其采集所需的设备和搭载这些采集设备的载具成本较高,导致公开的完备SAR图像数据较为稀缺。基于深度学习的目标识
视频SAR这一新型概念的雷达通过有效地结合了传统SAR全天时、全自然特性以及与高帧率成像特点,使得视频SAR具备了深远的技术应用潜力,为现代战场提升军事上的精准打击能力和预警能力,其中动目标检测定位跟踪作为视频SAR成像领域重要研究课题,具有巨大的研究价值和前景,本文主要基于动目标在视频SAR成像过程中失焦形成的阴影特性展开研究,主要包括基于阴影的动目标检测、跟踪定位方面。1、针对场景的持续成像介
信息技术的飞速发展,通信系统容量和速率的需求与日俱增。相干光波分复用(WDM)系统是实现高吞吐量长距离传输的关键技术,数字信号处理(DSP)算法的精度和复杂度直接影响着信号恢复的质量和速度。但进一步提升系统的容量和速率,会出现接收端DSP代价增大等问题。光学频率梳,具有相位相干性、稳定性等特点,将其用作WDM系统的光源,可以有效降低DSP的计算复杂度,对应用于长距离核心骨干网具有重要意义。本文研究
光微流激光融合了微流控和激光技术,因其优异的可重构特性和独特的信号放大机制在药物筛选、生物化学和医学传感中被广泛研究。免疫分析是一种利用免疫反应检测溶液中蛋白质分子的生化检测方法,基于光散射原理的免疫分析是其最重要的分析技术之一。免疫检测分析一般在传统生化分析仪中进行,因其原理的局限性,暴露出一些难以解决的问题:(1)传统生化分析仪基于一次光穿透散射原理,难以实现高灵敏度检测;(2)传统生化分析仪
近年来,军机试飞技术逐渐被某公司以及上级单位所重视,然而之前较为原始的试飞生产管理手段已经不能满足公司对试飞制造行业的需求。目前某公司试飞站对于试飞制造这一部分还没有一个完整的数据库综合管理平台,试飞工作开展还在沿用传统的体系,不可避免地存在诸多弊端。因此,设计一套可集成的试飞制造执行系统迫在眉睫。本文的主要工作是通过对某公司试飞站试飞生产管理过程中的各项业务进行分析,对于试飞站的生产计划管理、飞
信号的波达方向(Direction of Arrival,DOA)估计是阵列信号处理领域的一个重要研究内容。它的主要原理是可以根据观测信号和对应天线阵列的阵列流形估计出感兴趣信源的来波方向。一般来说,无噪声观测信号的协方差矩阵是一个满足低秩特性的矩阵,即协方差矩阵的秩等于信源数。但在一些实际的场景中,不同的信号模型、噪声模型及阵列模型等因素将导致信号的协方差矩阵不再具有低秩特性,这会导致协方差矩阵
随着人们对无线通信提出越来越高的要求,如何提高多输入多输出(Multiple Input Multiple Output,MIMO)系统的频谱效率逐渐成为了众多学者关注的焦点。研究表明,在MIMO系统中对发射前的信号进行预编码处理能够有效提高系统的传输效率。虽然现有的众多关于MIMO预编码的研究均能为实际应用提供很好的理论支持,但他们都有一个前提条件,即输入为高斯信号。然而,在实际的MIMO系统中
随着海洋科学与工程技术的发展,人类越来越重视海洋空间存在的巨大资源价值。同时,随着集群化控制系统、无人自主设备等技术的不断发展和突破,越来越多的无人自主设备应用到海洋牧场,海洋气候与环境监测系统等场景中。这些无人自主设备能够适应各种类型的海洋环境,在完成高强度任务的同时,大幅度降低人员工作风险。因此,研究人员越来越重视空中无人机(Unmanned Aerial Vehicle,UAV),水面无人船
传统雷达系统与通信系统相互独立,在面临联合空域作战、多平台协同作战等新型作战方式的威胁时,性能受到了极大限制,越来越难以满足信息化、协同化战争的任务需求。探测和通信(探通)一体系统的出现,实现了雷达系统与通信系统的有机一体,不仅可以实现战场态势信息的快速融合,还能增强系统灵活性、协同性。为了充分发挥探通一体系统的优势,提升系统整体作战效能,一个合理、灵活的频谱资源调度方案至关重要。本文以探通频谱共
当前,随着航天技术的发展,全球小卫星的数量正在快速增加。在动态场景下,由于小卫星星座网络模型在结构上更接近无线自组织网络(Ad-hoc),因此小卫星星座的动态路由算法要引入Ad-hoc的路由技术进行研究。首先,根据小卫星在高动态时变拓扑下的组网要求,本文提出了小卫星集群组网的路由方案,建立了从物理层、数据链路层到网络层的星间自组织网络架构。物理层主要完成无线数据收发,为上层网络通信提供可靠的无线通