论文部分内容阅读
纤维混凝土由于具有增强增韧力学性能,并能较好的解决工程中构件在冻融、腐蚀、盐侵等极端环境下引起耐久性问题,一直以来都是复合材料领域研究的热点问题之一。传统混凝土结构在建造过程或服役期间难以避免出现裂纹,进而引起结构内部钢筋的锈蚀,导致混凝土性能劣化,使用寿命缩短。在混凝土中掺入一定含量的玄武岩纤维,可以显著提高传统混凝土的力学性能,控制微裂纹的扩展,提高混凝土结构的耐久性。本文以玄武岩纤维混凝土(以下简称BFRC)为研究对象,开展了BFRC抗压强度试验、劈裂抗拉试验和三轴压缩试验,分析了围压、纤维长度和体积分数对混凝土增强增韧的作用,并给出相应的优化结果。以试验数据为基础,采用BP神经网络算法,并通过Matlab编程实现对BFRC本构模型的训练和预测。本文主要研究内容如下:1、分析总结了现有的纤维混凝土配合比设计方法,并结合实际情况,对其优缺点进行分析对比,选择纤维外掺法来计算玄武岩纤维掺量。选择直径为15μm,纤维长度分别为6mm、12mm和18mm的玄武岩纤维,根据纤维外掺法,得到纤维体积分数分别为0%、0.2%、0.4%和0.6%的玄武岩纤维混凝土。采用坍落度试验来测定玄武岩纤维混凝土的工作性能,试验表明掺入纤维的体积分数越高,塌落度越小。掺入纤维能够延缓骨料的沉降,提高了混凝土的粘连性和抗泌水性,同时表现出了良好的工作性能;2、在已有纤维混凝土抗压强度、劈裂抗拉和三轴压缩试验的实施方案、行业标准和相关理论基础的基础上,制定了适用于MTS816材料测试平台下的抗压强度和劈裂抗拉试验方案。试验结果表明:除纤维长度为6mm以外,在体积分数为0.2%时,BFRC的抗压强度和劈裂抗拉强度最大,但随着纤维体积分数的继续增加,抗压强度逐渐减小;掺入纤维的混凝土的劈裂抗拉强度比不掺纤维的高,且由试验数据可以发现,劈裂抗拉强度的增强效果要高于抗压强度。3、为进一步探索不同应力状态下BFRC的力学性能,对BFRC开展了不同围压条件下的压缩试验。试验结果表明:BFRC试件破坏模式与围压存在一定的关系,与玄武岩纤维长度和体积分数无关。无围压时,试件呈压裂破坏,出现贯穿的裂纹;有围压时,试件呈斜剪切破坏。随着围压的增加,主裂纹角度有所增加。纤维长度和体积分数的大小不会改变试件的破坏模式,但可以减少主裂纹的宽度以及细微裂纹的数量,混凝土的整体性会提高。在同一纤维长度和体积分数的条件下,随着围压的升高,玄武岩纤维混凝土的峰值应力和峰值应变都出现了不同程度的升高。继续增加围压,纤维增强混凝土的作用逐渐减弱。4、采用BP神经网络对BFRC本构模型进行样本训练和模型预测。根据试验数据设置网络参数和拓扑结构,将70%的数据作为训练集,30%的数据作为测试集,利用测试集对训练好的网络进行验证。结果表明:得到的预测值与试验值之间误差较小,具有较好的一致性。说明该方法在有充分样本数据的基础上,能够较好的预测BFRC的本构关系,解决了人工建模的困难,建立了BFRC应力与应变之间的隐式关系。