论文部分内容阅读
回旋管(Gyrotron)在毫米波雷达,通信,电子战,高功率微波武器研究,受控热核聚变,高能物理及工业方面的诱人前景,推动了回旋管的发展,使回旋管的研究开发在国际上受到了高度重视。从70年代中后期至现在一直得到蓬勃发展。美国,俄罗斯,德国,法国,瑞士,英国及日本等国投入了大量的人力物力进行研究。中国自70年代末开始也一直在进行跟踪研究。目前,国际上回旋管研究得到了很大的发展,已形成一个回旋管系列。近年来,对TEmn模式的电子回旋谐振受激发射(ECRM)不论在理论,实验还是计算机模拟都已作了较多的分析,并取得了相当的进展。与传统回旋管相比,ECRM由于其波频率有一大的相对论多普勒上移,因而在相同的工作频率下,可以数倍地降低所需磁场强度。与自由电子激光相比,在相同的工作电压下,ECRM的工作频率可以更高。由于ECRM兼有回旋管的效率高和自由电子激光频率,增益高的双重优点,在100—500GHz的频率范围内,可以达到百兆瓦级的输出功率及超过20%的效率。 粒子模拟方法(PIC)是计算物理领域中的一种重要方法,它对于研究线性和非线性物理过程的物理机制具有特别明显的优越性。尤其在研究一些暂态过程时提供了一种强有力的工具。在微波电子管(特别是回旋管和虚阴极微波发生器)中电子与波相互作用的研究中得到了很好的应用。本文发展了针对轴对称系统TEmn和TMmn模式的粒子模拟程序。可以计算无电子注时谐振时腔体中的场分布,谐振频率以及Q值等数据。并分别以工作模式为TE22,24.14G-Hz的回旋管,工作模式为TM31工作频率为31.5-GHz的回旋管及工作模式为TE62,工作频率为39.994GHz的放大管为例,对理论上提出的关于轴对称系统的TEmn和TMmn模式电子回旋脉塞(ECRM)进行计算机模拟,得到了场分布,速度群聚图等相关数据,并观察到粒子速度反转的新现象,证实理论上的结论。