【摘 要】
:
Tykhonov-适定性与LP-适定性在研究各类最优化问题和变分不等式问题的算法以及算法的收敛性中有很重要的作用.对Tykhonov-适定性和LP-适定性的研究是最优化理论的一个重要分支,本文主要对三类带约束的变分不等式问题作了研究:首先,本文根据[15]和[49],Huang给出的LP-适定性的定义,给出了一类通常意义下的变分不等式问题(VIP)的LP-适定性,讨论了(VIP)的LP-适定性成立
论文部分内容阅读
Tykhonov-适定性与LP-适定性在研究各类最优化问题和变分不等式问题的算法以及算法的收敛性中有很重要的作用.对Tykhonov-适定性和LP-适定性的研究是最优化理论的一个重要分支,本文主要对三类带约束的变分不等式问题作了研究:首先,本文根据[15]和[49],Huang给出的LP-适定性的定义,给出了一类通常意义下的变分不等式问题(VIP)的LP-适定性,讨论了(VIP)的LP-适定性成立的条件.然后,由[50],定义了一类约束广义变分不等式问题(GVIP)的四类LP-适定性,讨论了这四类LP-适定性之间的关系,并且研究了(GVIP)的LP-适定性成立的一些充分条件和必要条件.本文的最后部分是将LP-适定性推广到一类约束拟变分不等式问题(QVIP)中,分别定义了(QVIP)的LP-逼近解序列和LP-适定性,对这四类LP-适定性之间的关系作了说明,特别在集值映像S是下半连续且是闭的,算子A是连续的情形下,着重对(广义)I类LP-适定性的性质和成立的充分必要条件进行了讨论,得出了一些结论.
其他文献
本文研究了动力系统中的两个问题。一方面,1988年,熊金城在《线段映射的动力体系:非游荡集,拓扑熵以及混乱》一文中对线段连续自映射f :I→I上的一些重要点集进行了刻划。考虑是可降映射,本文利用可降映射的特征及笛卡尔积运算,将一维自映射的情形向更为一般地一类n维自映射进行了推广。另一方面, L. Block于1981年证明了区间映射周期轨具有稳定性。即对于任一区间I上的连续自映射f :I→I,如果
拓扑熵是动力系统理论中重要的概念,它是重要的拓扑共轭不变量。它的数值可用来度量动力系统的混乱程度,因此拓扑动力系统中有关拓扑熵的研究是非常重要的定性研究。近年来,人们在这一领域做了大量的研究并取得了一系列的成果。本文主要研究张成集和分离集本身具有的性质,积系统的Bowen拓扑熵。在第一章中,我们简要地介绍了拓扑动力系统的发展现状、本文的写作背景及研究的主要内容。在第二章中,我们主要研究了张成集和分
高强度聚焦超声(High Intensity Focused Ultrasound)治疗是一项无创伤、非介入式的新治疗手段,它的优势在于:(1)强度高、可靠性好,副作用小;(2)具有很高的精度;(3)能够深入体内而不损伤正常组织等。因此,引起了人们的极大关注。进行HIFU治疗时,首先需要将超声换能器在组织内形成的焦区设置在病灶处;因此,医生必须预先知道声场在组织中的分布。由于组织的声学性质和水的声
目的:研究自身免疫性肝炎临床诊断与评分诊断系统诊断的一致性,从而分析自身免疫性肝炎评分诊断系统的临床应用情况,评估是否存在过度诊断或诊断不足情况,并探讨影响评分诊断与临床诊断一致性的因素。材料与方法:回顾性收集2010年1月至2018年12月于重庆医科大学附属第二医院入院的第一诊断为自身免疫性肝炎的患者597例,分别应用修正积分诊断系统和简化诊断评分标准进行评分诊断,并与临床诊断进行对比。结果:1
目的:评估慢性丙型肝炎病毒感染患者经DAA治疗后各时间点病毒学应答及长期肝脏获益的情况。方法:收集重庆医科大学附属第二医院2015年1月1日至2021年2月28日间门诊或住院的共223例HCV慢性感染经全口服DAA治疗的丙肝患者,评估其治疗后不同时间点病毒学应答情况以及长期肝纤维化、肝癌等情况。结果:1、SVR:在有各时间点数据的患者中,SVR12为98.1%,随访最长的患者可达到SVR216,在
随着科学技术的快速发展和信息时代的来临,基于网络技术和多媒体技术为依托的现代教育技术在大学物理教学领域中得到了广泛的重视和应用。现代教育技术与大学物理的整合研究已经成为了当前教育研究中的一个热点问题。物理学作为自然科学的基础学科有着十分重要的地位,大学物理课程是高等院校理工学科的一门必修课程。如何将现代教育技术很好地与大学物理整合起来,促进学生的专业知识学习效果和创新能力的提高,培养学生的合作意识
多目标排序是研究多个优化目标的排序问题,它在解决经济、管理、工程、军事和社会等领域出现的复杂问题中起着越来越重要的作用。以往对单台机器排序问题的研究大都限于单目标排序,追求某一个目标的优化时往往以劣化其他目标为代价。然而在实际的生产调度和计划管理中,绝大多数情况需要综合考虑一个作业排序的许多性能指标,即需要求解多个目标函数的最优或近似最优加工顺序或在某目标函数约束范围下求其它一些函数的最优或近似最
不定方程不仅自身发展活跃,而且全面的应用于离散数学的其它各个领域。它对于人们学习研究和解决实际问题有重要的指导作用。因此,国内外有不少学者对不定方程进行了广泛而深入的研究。关于不定方程x~3±8= Dy~2,其中D>0,已有不少的研究,当D没有6k + 1的素因数时,两个方程的全部整数解已经解决。但是当D不含平方因子,并且被3或者6 k + 1型素因数整除时,方程的求解比较困难。不定方程x~3±8
向量集值优化理论在微分包含、逼近论、变分学与最优控制等领域均有广泛的应用,而集值优化问题的最优性条件是其中的重要组成部分,是建立现代优化算法的重要基础.另一方面,凸性的概念在优化理论中扮演着重要的角色,因而各种凸性的推广都倍受人们的关注。本文在广义次似凸的假设下运用择一性定理得到几类集值优化问题的弱有效解意义下的最优性条件和赋范线性空间超有效元的非导数型最优性条件,以及在近次似凸集值映射假设下得到
优化问题的适定性在稳定性理论和最优化算法的收敛性中起着非常重要的作用.近年来,随着向量优化的出现和日渐成熟,对适定性的研究也开始在向量优化中进行.本文根据Miglierina和Molho在文献[7],Lordian[14]和Bednarczuch[3]中的提到的几种适定性,在模型(P)(f为向量值函数)上,借鉴Huang和Yang[19]的思想方法,从向量的点态适定性和整体适定性的角度出发,定义了