【摘 要】
:
基于静息态功能磁共振成像(Resting-state functional Magnetic Imaging,rs-f MRI)的脑指纹是指rs-f MRI信号中存在着独一无二的特征,可以用来表明个体的独特性,然而与脑指纹识别最相关的特征至今仍没有统一的定义标准。人类连接组项目的发布以及机器学习、深度学习的发展,为脑指纹的探索奠定了技术基础。基于rs-fMRI的脑指纹识别,大多采用全部的静态功能连
论文部分内容阅读
基于静息态功能磁共振成像(Resting-state functional Magnetic Imaging,rs-f MRI)的脑指纹是指rs-f MRI信号中存在着独一无二的特征,可以用来表明个体的独特性,然而与脑指纹识别最相关的特征至今仍没有统一的定义标准。人类连接组项目的发布以及机器学习、深度学习的发展,为脑指纹的探索奠定了技术基础。基于rs-fMRI的脑指纹识别,大多采用全部的静态功能连接进行个体识别,特征维数高,可能存在冗余特征影响识别性能,本文从挑选出对识别影响比较大的特征这一角度出发,提出了基于多尺度组Lasso的脑指纹识别方法;然后为了进一步从包含信息更丰富的动态功能连接中提取脑指纹特征,本文又提出了基于BiLSTM网络和注意力机制相结合的脑指纹识别方法;此外本文引入了SENet网络,提出了基于多尺度时空SENet网络的脑指纹识别方法。已有的研究大多基于小样本数据,样本量只有几百,容易造成模型的过拟合,本文采用了一个包含1003个样本的数据集进行实验。本文具体工作如下:(1)本文提出了一种基于多尺度组Lasso的方法来选择有识别力的静态功能连接进行脑指纹识别。已有的脑指纹识别方法大多基于全部的静态功能连接特征进行识别,很难确定哪些功能连接特征对脑指纹识别贡献大,且影响识别性能。采用组Lasso可以选出最有识别力的一些功能连接,提升识别性能。提出的方法在性能上超过了其它方法,识别率可以达到98.21%。(2)本文提出了一种基于BiLSTM网络和时空注意力机制相结合的脑指纹识别方法。同静态功能连接相比,动态功能连接包含有更丰富的信息,有助于提升脑指纹识别性能。为此,本文基于滑动窗法计算rs-f MRI的动态功能连接,并且使用BiLSTM网络提取dFC的时空特征,同时结合时空注意力机制对特征赋予不同的权重系数增强特征表示,识别率可以达到82.20%。(3)本文提出了一种多尺度时空SENet网络融合多个尺度的dFC的时空特征进行脑指纹识别。不同步长下的dFC,即多尺度dFC,包含了互补的信息,为了融合多尺度dFC的时空特征以利用更多的信息,本文使用SENet网络突出对识别任务影响力比较大的的特征,抑制对识别影响力比较小的特征,也就是对不同尺度的时空特征施予不同的权重系数,提高识别性能。提出的方法获得了92.17%的识别准确率,优于其他方法。提出的三种方法均提高了脑指纹的识别准确率,有助于更好地推动脑指纹识别研究的发展,从而为预测疾病提供帮助。
其他文献
随着云计算、大数据、物联网等技术的飞速发展,互联网应用的种类层出不穷,引发了数据规模的爆炸式增长,也带来了严重的信息过载问题。作为解决“信息过载”的重要手段之一,推荐系统已经得到广泛应用。但是传统的推荐系统存在冷启动、用户-项目评分矩阵的极度稀疏性等问题。除了推荐系统的评分信息外,用户对项目的评论信息也包含了丰富的用户兴趣和项目特征信息,有助于更准确地学习用户和项目表示。近年来,将评论融入推荐模型
按照课程标准的要求,就核心内容来说,统编《道德与法治》九年级教材主要涉及国情部分。因为这一部分与初中学生的实际生活有一定距离,且涉及较多比较抽象的概念和政策,有不少教师在教学时往往觉得无从下手。有的教师则以保证科学性为由,采取照本宣科的教学方式,将本应生动活泼的道德与法治课变成了学生非常排斥的"训教与口号"课。如
在城市轨道交通飞速发展的今天,要保证列车安全运行,关键不仅在于对轨道交通系统中基础设施病害的及时检修,相关核心工作人员如列车司机的专业性和机动性也尤为重要。司机能否在列车到站、出发、关门等重要节点做出正确手势是衡量司机工作态度和质量的重要标准。不正确的手势判断将直接威胁列车运行安全,因此对司机手势动作的监控识别十分重要。然而目前该工作主要依赖人工完成,不仅效率低下,而且造成人力资源浪费。因此需基于
随着深度学习技术的发展,目标检测技术的检测精度和速度不断被刷新。目前目标检测技术已被应用于生活的各个场景中,如:智能监控、智慧交通和无人驾驶等。然而目标的时空尺度变化仍然是检测中的难点,因此本文从多尺度特征的角度对这些问题展开了研究,利用空间多尺度特征研究了小目标难以检测的问题,在此基础上又研究了检测算法轻量化的问题,最后利用时间多尺度特征对视频目标检测中帧间信息的有效利用进行了研究。本文的具体研
疲劳识别技术可应用于疲劳驾驶预警、空中交通管制员疲劳监测、重型器械操作员疲劳提醒等领域,以规避疲劳作业潜在的巨大安全隐患。针对现有疲劳识别方法欠缺考虑疲劳个体差异性及依赖于实验室数据的不足,本文研究了真实场景下基于自适应阈值眨眼检测及Xgboost的疲劳状态识别问题。有效的特征提取技术是实现可靠、有效的疲劳状态识别的前提。作为提取眼部疲劳特征的关键技术,现有眨眼检测方法存在较少考虑眨眼个体差异性导
车辆重识别技术也被称为车辆跨镜头追踪技术,其主要目的是从不同摄像头拍摄到的大量道路监控视频中检索属于特定车辆的全部图像。该技术需直接从车辆的视觉外观中提取到有判别性的特征,但是跨摄像头进行图像匹配时车辆图像往往来自于不同的视角,而在不同的视角下车辆的外观变化很大,因此跨视角匹配已经成为车辆重识别任务中一个重要的挑战:一方面,多个不同视角下同一车辆外观差异性大,导致车辆有着显著的类内差异;另一方面,
智能制造在信息系统的性能需求和功能需求方面对目前的制造业提出了崭新的或者更高级别的要求,通过对影响信息系统重要性能—鲁棒性的因素进行分析,根据智能制造信息系统的信息层和物理层之间的深度协作建立智能制造信息系统网络模型,描述智能制造信息系统级联失效过程,从网络可用性角度基于蚁群算法进行仿真实验,提高系统未发生故障的点在级联失效情况下寻找最短路径的能力,从而改善系统鲁棒性。本文主要从以下三方面进行创新
付费会员的经济模式近年在国内各个利于飞速发展,通过付费成为会员可以享受更优惠的价格和更高平直的服务,付费会员的经济模式正成为消费的新常态。付费会员的经济模式通过个人和企业奖励一种正式的、可持续的关系,企业为会员推出了更加优质的服务,会员增加该企业的消费总额和频率。互联网领域会员经济随着生态的竞争而迎来了爆发增长。一方面,全球互联网会员已形成规模,亚马逊的会员用户数在2018年超过1亿。另一方面,随
随着工业4.0概念的兴起,工业领域也正发生着智能化转型的热潮。在实际的工业场景中,借助于云计算和边缘计算技术可以提升工业物联网中生成数据的处理效率,但数据泄露造成的隐私问题也正在损害着人们的利益。针对该问题,众多学者利用基于密码学理论的数学加密方法进行了较多研究并取得了一定的研究成果。但本文方案不同于调研的数学加密等方法,而是从新的角度考虑该问题,利用区块链去中心化、防篡改以及可追溯的技术特性,通
为了增加机器人的适应场景和应用范围,轮腿式机器人应运而生,其中轮腿共同驱动式机器人控制简单,可靠性和地形适应能力一般,轮腿独立驱动式机器人可靠性和地形适应能力强,控制复杂。本文利用单环闭链机构可靠性强,控制方便的特点,将两种单环闭链机构相结合,提出具有两种运动形式的单环闭链变胞机构,根据闭链腿式机器人的布置原则构建可变形轮腿共同驱动式机器人,进行了理论分析、仿真和样机试验研究。首先,将Chebys