论文部分内容阅读
手势是一种自然而直观的人际交流模式,基于视觉的手势识别是实现新一代人机交互所不可缺少的一项关键技术,而由于手势本身具有的多样性、多义性,以及时间和空间上的差异性等特点,加之人手是复杂的变形体以及视觉本身的不适定性,使此方向研究成为一个极富挑战性的多学科交叉研究课题.该文侧重于研究复杂背景下的手势分割以及利用不同方法对手势轨迹进行识别,在此基础上对手势的检测和样本的自动聚类做进一步研究,并通过建立基于HMM的门限模型以增强抗干扰能力从而提高识别率.手势分割的好坏直接影响到识别率高低,而基于颜色及运动信息的分割技术已成为运动目标跟踪分析的有效手段,该文通过引入具有强特征提取能力的SOM神经网络进行肤色的聚类,并结合人手的主运动分量分析提取出完整的手形,通过实验验证了该算法的有效性和良好的自适应能力.