论文部分内容阅读
磁约束聚变中高能量粒子的良好约束对于维持核聚变反应的自持燃烧和高增益功率输出起着决定性的作用。但是在环形磁约束装置中出现的阿尔芬本征模却对高能量粒子的约束起着破坏的作用。环形阿尔芬本征模可以通过波与粒子的共振相互作用造成高能量粒子的输运损失,这在低碰撞的燃烧等离子体中高能量粒子的损失途径中甚至起着主导的作用。因此我们有必要研究阿尔芬本征模的激发条件和控制手段。在EAST全超导托卡马克上我们结合共振磁扰动线圈系统产生的三维磁扰动场和电子回旋共振加热系统对阿尔芬本征模的激发和控制问题进行了系统的实验研究。我们在国际上首次发现了三维磁扰动场在渗透重联之后可以产生沿浅俘获轨道进动的高能量电子,并进一步激发一只高频(f~150 kHz)的沿着离子逆磁方向传播的环形阿尔芬本征模。与此同时三维磁扰动场也可以激发一只在环向呈现驻波结构的低频(f~20 kHz)比压阿尔芬本征模。它在撕裂模(f=2 kHz)出现时会因多普勒效应分裂成两支不同频率(f~=18 kHz,f2=22 kHz)的模式。另外还在EAST装置上首次发现了电子回旋共振加热对环形阿尔芬本征模的激发作用,并发现了以50 ms周期在200 kW和500 kW之间做切换的电子回旋共振加热的功率调制对环形阿尔芬本征模的频率也产生了高达Δf=25 kHz的调制作用。经过对多种可能性的排除,这种频率调制作用有可能是电子回旋加热的功率调制对局域的密度或者安全因子产生了调制作用。除了上述对阿尔芬本征模的实验观测,我们还结合三维磁扰动场和电子回旋共振加热系统对阿尔芬本征模进行了主动控制的实验研究。我们发现处于共振加热模式的电子回旋可以完全抑制高频的环形阿尔芬本征模并同时增强低频的比压阿尔芬本征模。而处于电流驱动模式的电子回旋却发生了完全相反的作用,它可以增强高频的环形阿尔芬本征模而同时抑制低频的比压阿尔芬本征模。而三维磁扰动场对于波加热作用下的比压阿尔芬本征模有着增强的作用。另外密度对环形阿尔芬本征模的稳定性也有重要的作用,在密度升高后因为高能量电子被慢化削减,环形阿尔芬本征模被致稳。这些工作揭示了三维磁扰动场和电子回旋加热或可以在未来的聚变反应堆中作为主动控制阿尔芬本征模的有效手段而得到应用。