论文部分内容阅读
采用半固态搅拌常规温度(730℃)重力浇注和半固态搅拌低过热度(630℃)重力浇注两种工艺方法制各出了碳化硅(SiCp)和石墨(Gr)颗粒复合增强ZLl01铝基复合材料,并研究了体积分数不同的增强颗粒对复合材料组织与性能的影响。研究表明:通过以上两种工艺,能够制备出增强颗粒分布均匀,且与基体合金结合良好的颗粒增强铝基复合材料。
为了解决增强颗粒与基体合金浸润性差以及分布不均匀等问题,在搅拌复合之前,对SiCp进行1000℃的高温焙烧预处理;在复合材料熔炼制各的过程中,当合金熔化并冷却到液固相线温度之间(600℃)时,加入经300℃预热的SiCp和Gr,并将搅拌桨转速设定为1400rad/min,由此产生的漩涡可以把两种增强颗粒卷入到熔体中,稳定搅拌时间为15min,之后随着合金熔体升温至浇注温度,搅拌速度逐渐减慢。
通过显微组织观察、拉伸测试、断口扫描分析、阻尼性能测试、耐磨性能测试等方法研究了SiCp/Gr/ZL101复合材料的显微组织与性能。
金相显微组织分析表明:当浇注温度为730℃时(工艺一),zL101合金中的初生相为枝晶态的α-Al,而当浇注温度为630℃(工艺二)时,ZL101合金中的α-Al由枝晶态变为细小的蔷薇状,晶粒明显得到细化。其中SiCp和Gr在基体相中基本达到了均匀分布且没有出现颗粒团聚现象。
拉伸测试表明:SiCp/Gr/ZL101复合材料抗拉强度均高于基体合金,而伸长率均低于基体合金。并且随着SiCp体积分数的增加,抗拉强度先升高后降低,伸长率下降。复合材料的最高抗拉强度达到191MPa,比ZL101合金提高了32%。在增强颗粒体积分数相同的情况下,通过工艺二制备而成的复合材料力学性能优于工艺一制各而成的复合材料。
断口分析表明:随着SiCp含量的增加,复合材料的塑性明显下降。
SiCp/Gr/ZL101复合材料的断裂方式为韧性断裂→准解理断裂→解理断裂→沿晶断裂。
阻尼性能测试表明:SiCp/Gr/ZL101复合材料的内耗值Q-1高于基体合金,且随着SiCp体积分数的增加,Q-1也增加。SiCp/Gr/ZL101复台材料的阻尼机制主要是位错阻尼和界面阻尼。在相同测试条件且增强颗粒含量相同的情况下,与工艺二相比,通过工艺一制各而成的复合材料的阻尼性能更加优异。
耐磨性能测试表明:SiCp/Gr/ZL101复合材料的耐磨性能明显优于基体合金,且随着SiCp体积分数的增加,磨损量减小。通过工艺二制各而成的复合材料的耐磨性能均优于工艺一制备而成的复合材料。随着复合材料中SiCp含量的增大,磨损机制由粘着磨损+磨粒磨损→磨粒磨损。