论文部分内容阅读
现代科学技术的高速发展给人们带来了更加美好的生活,尤其是步入信息时代以后,网络通信以及移动通信给人们之间的交流带来了极大的便利。对于传统的通信系统,通常是基于电子电路的通信系统,我们称之为电学系统,随着现代通信技术的高速进步以及互联网的发展,信息量呈现爆炸性增长,于是对于通信系统也有了更高的要求。传统的电学系统由于其特有的电学瓶颈,事实上无法满足现代大容量、高速度、高精确度的信息传输要求,于是微波光子学(Microwave photonics:MWP)应运而生,其是用光学方法来处理电学信号的一门综合学科。受激布里渊散射(SBS)作为一种非线性光学效应,由于其可以在特定的频率处产生增益峰,因此被广泛应用于光学滤波系统中去,随着现代全光通信的兴起,集成微波系统受到越来越多的重视,研制出能够替代光纤的光学波导就成为了一种趋势,而集成微波光子滤波器作为集成光学器件的一种也受到了越来越多的重视。本文介绍了微波光子学的发展以及SBS的基本理论,并对基于SBS的集成微波光子滤波器进行了详细的分析与设计。首先从材料非线性、集成度以及制作工艺上对各种常见的集成波导材料进行分析,这些分析都是建立在SBS的基础之上的,主要看各种材料对SBS增益的加成大小,综合分析最终确定了以硫化砷作为波导的芯层材料,然后结合光场限制、声场限制以及声光耦合效率分析提出了半悬空的波导结构,芯层横截面边长为0.9μm,长度为3.9cm,支撑材料为二氧化硅,支撑物与芯层接触宽度为0.2μm,在此情况下SBS增益为54 dB,3dB线宽为8.2MHz。然后分析了布拉格光栅的慢光延迟作用对光场能量的增强效果,通过严格计算布拉格光栅的周期以及调制深度使被增强的光波频率恰好落在硫化砷的SBS增益峰处,此时的光栅周期为344.67nm,调制深度为10-4,由此使得SBS进一步增强,同时由于SBS增益与线宽的反比关系使得SBS线宽进一步降低,最终增益达到了58.5dB,3dB线宽为7.8MHz,波导的截面边长为0.9μm,长度为3.9cm,泵浦光功率为248mW,无论从SBS滤波性能、波导集成度还是能量利用率上都有较大的提升。