【摘 要】
:
地貌形成受控于区域构造活动,区域地貌的变形结果可以反映区域构造活动与演化历史。太行山南段位于黄土高原和华北平原的过渡区域,处于地质构造较为复杂的区域,新生带以来受到太平洋板块和印度板块等俯冲的双重影响,构造活动强烈,对地貌具有控制作用,区域形成大规模的断陷活动,形成多期次层状地貌,发育一系列NNE向断裂,并构成一条显著的地震活动带,历史上发生过1830年磁县71/2级地震。该地区长时间没有大震发生
论文部分内容阅读
地貌形成受控于区域构造活动,区域地貌的变形结果可以反映区域构造活动与演化历史。太行山南段位于黄土高原和华北平原的过渡区域,处于地质构造较为复杂的区域,新生带以来受到太平洋板块和印度板块等俯冲的双重影响,构造活动强烈,对地貌具有控制作用,区域形成大规模的断陷活动,形成多期次层状地貌,发育一系列NNE向断裂,并构成一条显著的地震活动带,历史上发生过1830年磁县71/2级地震。该地区长时间没有大震发生,缺少关注度,尤其是对第四纪以来太行山南段的隆升幅度、期次还有些争议,晋获断裂中南段的活动性研究还不充分。为了研究太行山南段构造地貌的差异,本文通过室内遥感解译以及GIS平台,利用多种地貌指数对该区域地貌演化阶段进行了探讨;通过宏观的地形参数(坡度及坡谱、粗糙度、切割度、起伏度)、河流地貌参数(HI指数)以及条带状剖面分析了太行山南段的宏观构造地貌;通过遥感影像解译和无人机遥感数据、野外的阶地调查以及前人研究资料对太行山南段沁河、丹河、漳河、露水河、淇河、淅水河、子房河和平甸河的河流阶地的发育级数、拔河高度和年龄进行了限定,建立了太行山南段阶地形成时代框架,探讨了太行山南段第四纪以来构造活动之间的关系;基于遥感影像解译、无人机飞行、DEM数据分析、野外的实地调查、钻孔信息以及前人的研究,对晋获断裂中南段的活动性进行了研究分析,获得了以下认识:(1)太行山南段的坡度、粗糙度、切割度、起伏度在太行山南段东侧呈现高值,高值区域与太行山东麓断裂走向具有一致性,显示出断裂对地貌的的控制作用;太行山南段流域HI值指示太行山南段地貌处于幼年-壮年发展阶段,整体构造处于活跃阶段。(2)太行山南段在1.7Ma至少发生了3期6个阶段的构造隆升事件,即早更新世晚期、中更新世和晚更新世,6个阶段分别为1.7Ma、0.8Ma、0.1Ma、0.07Ma、0.05Ma和0.03Ma。1.7Ma以来隆升速率逐步加快,2.6Ma以来太行山南段平均抬升了166~285m,最大不超过300m,因此,第四纪并不是太行山南段主要隆升阶段。(3)晋获断裂中段走向NNE,为一条正断层,上新世以来断距约500m,活动速率为0.09mm/a,根据钻孔信息和断层剖面信息,断裂早更新世活动较强,中晚更新世以来活动减弱;晋获断裂南段走向NNE,为一条正断层,早更新世活动剧烈,中晚更新世活动较弱。
其他文献
滇西南地区受多期岩浆活动和深大断裂的影响,地热资源丰富,地震活动性强。位于滇西南地区的南汀河断裂带是北东向弧形构造体系中规模最大、特征最明显断裂带。南汀河断裂带是滇西南地区地震活动最为强烈的断裂带之一,地热活动频繁,沿断裂带出露温泉数量多,适合作为地震地球化学监测点。为了研究云南省南汀河裂带温泉水文地球化学特征,本文通过温泉水的离子浓度及同位素组分数据分析了温泉水的来源、水化学类型、微量元素含量特
地震具有突发性和破坏性,会给人类带来巨大灾难和损失。地震预测是一个世界性的难题,国内外学者长期以来开展了多方面的地震预测研究,提出了一系列的地震预测模型,取得了长足的进展,但仍不能满足当今社会发展的急切需要。近年来,随着地震和地球物理观测手段的进步,地震观测数据在急剧增加,适用于大数据的机器学习方法在地震预测研究中展现了广阔的应用前景。本文在总结现有工作的基础上,以中国地震科学实验场为研究区域,以
南北走向的小江断裂带与北西向延伸的红河断裂带是一级块体边界,在川滇块体南部交汇形成应力集中的锐角区域。该区域也是印度板块和欧亚板块碰撞作用导致青藏高原物质逃逸的重要区域。地震各向异性是研究壳幔介质变形、深部物质运移和岩石圈动力演化等特征的重要依据。S波穿过地壳各向异性介质时,获取的分裂参数可以指示区域应力方向和复杂构造形态。中国地震局地震预测研究所于2017年12月在川滇块体南部布设了跨越一级块体
建筑物作为大地震的重要承载体,其震害信息不仅是衡量灾区受灾程度的重要指标,而且是科学开展地震应急救援、灾情评估的重要依据。LiDAR点云在震后复杂场景中能表现高精度的地表三维信息和丰富的地物空间结构信息,目前,仅以点云为数据源进行灾区建筑物震害信息提取方法大多仍集中在传统的逐步分类提取,很难满足应急救援时效性以及遥感地物自动化智能化识别的需求。深度学习作为数据智能处理技术之一,能够从大数据中快速地
地震学本质上是一门观测的科学。地震观测为人们记录、分析和研究地球内部结构、确定不同震源模型下的运动学和动力学参数等方面的研究提供连续、可靠和完整的基础数据。进行地震观测需要有观测台站以及各种地震仪器的支持。目前我国已经建立了完备的数字地震观测系统,但是受到地表影响比较大,采用井下观测方式是躲开地表各类干扰、提高地震监测能力的有效途径,也是直接在地下深处测量应力应变的重要手段,提高观测地震数据质量的
60Ma~50Ma以来,印度板块与欧亚板块开始碰撞,导致青藏高原隆升和大量地壳物质向东和南东侧向逃逸。位于青藏高原东南缘的川滇块体受板块边界动力源的持续影响,是目前向南东挤出逃逸活动最为强烈的地区之一。作为川滇块体的北东边界断裂,鲜水河-小江断裂带不可避免地进行高速率的左旋走滑运动,其北西段的鲜水河断裂构造活动最为活跃,发震频度最高。本文基于InSAR、GNSS两种星载大地测量技术研究该断裂带地壳
俯冲带是地球内部重要的循环系统,已有研究发现俯冲带内部中深源地震存在明显的分层,同时各层之间存在着不同的震源机制,特别体现在环太平洋俯冲带区域的中深源地震。其中中源地震(30~300 km)存在的双地震带可以用脱水脆化解释。角闪石在俯冲带区域含量丰富,结构复杂,开展角闪石族矿物脱水动力学对于理解俯冲带区域水的赋存和运移,以及探讨中源地震形成机制具有重要意义。本论文开展了不同升温速率下普通角闪石和透
青藏高原东南缘具有复杂地形、地震频发等特点,其地表变形机制、应力应变状态一直是地学研究的热点,但青藏高原东南缘的变形机制一直是颇有争议的话题。地壳的变形是否连续?地表是否与地壳耦合?不同深度的地壳变形特征是否一致?以上问题的科学研究,对于认识青藏高原东南缘的变形机制具有重要意义。本文从应变率场、构造应力场以及地震各向异性的三个研究方向出发,联合分析青藏高原东南缘不同深度的构造变形机制。本文基于19
弹性回跳理论是地震产生的理论基础,位错理论是地表形变数值模拟与地震反演的理论依据,而地震破裂过程的反演最早也是基于这两大理论。地震通常发生在岩石圈弹性层断层上,断层长期受到板块或活动地块构造运动而发生变形促使所产生的弹性应变能进行不断积累,当积累的能量超过其本身能承受的界限时,断层就会发生破裂和滑动,破裂结束后两侧断层便回跳到受力平衡状态,断层上积累的弹性应变能得到释放。事实上,弹性应变能以多种形
我国是世界上地震灾害最频发、受地震灾害威胁最严重的国家之一,从全球地理分布上来看,我国位于欧亚板块的东南部,且由于地理位置和板块运动的原因,太平洋板块和印度洋板块同时对我国产生挤压,因此在板块运动的交界处成为了地震活动频发的地带,也就是我国的几大地震带。破坏性的大地震经常发生在这些地区,发生地震的同时造成了极其严重的损失,根据我国相关部门的统计,地震灾害造成的人员死亡最多,远超其它类型的自然灾害。