甲状旁腺激素类似受体(iPTHRs)及其配体对昆虫发育与表皮形成的影响及作用机制研究

来源 :南京师范大学 | 被引量 : 0次 | 上传用户:wkkyo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
神经肽类激素是一类进化上古老的内源性活性物质,其主要受体类型G蛋白偶联受体(G protein coupled receptors,GPCRs)是细胞膜上最大的蛋白质超家族。它们介导的信号传导途径不仅广泛参与动物正常生长发育过程中的各种生命活动,而且还与多种疾病的发生、发展和治疗密切相关。因此,神经肽及GPCRs可作为重要的药物靶标,其相应的研究也一直位于医学新药研发、农业杀虫剂潜在靶标探索的前沿。由弥散神经内分泌系统分泌的甲状旁腺激素(parathyroid hormone,PTH)家族成员及其受体(parathyroid hormone receptors,PTHRs)在脊椎动物的钙和磷的调节、肾脏和骨骼的发育过程中发挥重要作用,人工合成的PTH也已在市面上获批用于骨质疏松症、甲状旁腺功能减退症等疾病的治疗。而在无脊椎动物中,对该信号系统的研究较少。本课题组和日本Tanaka课题组分别率先、相继在赤拟谷盗(Tribolium castaneum)、褐飞虱(Nilaparvata lugens)等代表性昆虫中发现了PTHRs的类似受体,命名为i PTHRs。然而,在昆虫等无脊椎动物中是否存在i PTHRs的内源性配体一直未见报道,i PTHRs仍以孤儿受体的形式存在。另外,本课题组早期对赤拟谷盗i PTHRs的功能研究发现,其干扰之后严重影响了昆虫蛹至成虫的蜕皮羽化过程及表皮形态建成,但具体作用机制尚不明确。基于以上背景,本研究主要以完全变态昆虫赤拟谷盗为实验材料,对其适应性进化机制进行分析,筛选鉴定其潜在的内源性配体并进行功能研究,同时利用组学测序对该信号系统的作用机制进行进一步的挖掘,另外,也在不完全变态昆虫褐飞虱中开展了对i PTHRs进行初步的结构和功能验证。通过上述实验,本研究试图为全面了解PTHRs/i PTHRs的进化、生理功能及作用机制提供新的线索,可望为害虫生物学防治中绿色杀虫剂的开发提供候选作用靶标,甚至为PTH信号系统影响人类钙磷代谢失调与骨质疏松、甲状旁腺功能减退症等疾病的发生和治疗提供参考。首先,本研究通过筛选更多类别无脊椎动物的i PTHR(含节肢动物蛛形纲、软体动物等类群)联合脊椎动物各纲代表性物种的PTHRs进行系统发生关系分析,并利用PAML(Phylogenetic Analysis by Maximum Likelihood)软件包中的Code ML程序对无脊椎动物的i PTHRs进行适应性进化分析,结果显示脊椎动物、无脊椎动物PTHRs/i PTHRs中发生了独立的复制和丢失事件,且无脊椎动物i PTHRs数目更多样化;无脊椎动物i PTHRs经历了选择压力,筛选出21个多位于胞外近膜端及跨膜结构域的正选择位点。由于正选择位点富集的部位为配体和受体结合的关键区域,暗示无脊椎动物中配体在序列上可能存在较大变异;其次,通过广泛搜集比对信息和利用Blast搜索筛选出昆虫i PTHRs的候选配体PXXXamide。赤拟谷盗的PXXXamide的蛋白质编码区域编码109个氨基酸,与脊椎动物PTH没有显著的序列同源性,但在节肢动物中比较保守;利用GPCR受配体鉴定系统对其与i PTHRs的关系进行鉴定,结果表明候选配体PXXXamide能显著激活i PTHRs表达细胞中钙离子关联的荧光信号,证明了PXXXamide的确是i PTHRs的内源性配体,命名为i PTH。利用实时荧光定量PCR和免疫组化对其进行时空表达分析,发现其在晚期蛹、中枢神经系统、肠呈现高表达,其中组织表达模式与受体i PTHRs一致。然而,利用RNA干扰技术对其进行功能分析,结果却表明i PTH干扰后对赤拟谷盗的生长发育没有影响,这与受体造成的畸形表型不一致;原因之一是可能在昆虫体内还存在另外的配体发挥作用,原因之二是结合免疫组化结果可知,干扰i PTH之后在中枢神经系统和肠组织中的大部分神经投射的阳性荧光信号已消失,但在一些神经肠内分泌细胞依旧保持着免疫阳性,可能这些仅存的i PTH即可保证机体的需要;再次,利用实时荧光定量PCR对该系统干扰后蜕皮激素合成与代谢、保幼激素合成与代谢及调控羽化相关基因的表达量进行检测,结果表明,i PTH信号系统在干扰之后,蜕皮激素合成通路中的关键酶基因CYP307A1、转录因子E74、Broad complex(Br-C)、FTZ-F1的表达量在i PTHRs干扰后均未发生改变;即使合成通路中的CYP315A1和CYP314A1表达量呈现轻微下调,并未造成干扰组3天蛹和5天蛹蜕皮激素含量的改变;保幼激素合成关键酶CYP15A1和JHAMT的表达量在i PTHRs干扰后显著上调;羽化相关神经肽CCAP、bursicon的受体CCAPRs、Rickets表达未受影响。这些结果表明了i PTHRs造成的蜕皮羽化失败并不是通过影响蜕皮激素合成与代谢、羽化相关调控基因造成的,而保幼激素的合成受到影响则可能是原因之一;另外,通过差异转录组学和相对定量蛋白质组学对i PTHRs干扰之后的下游调控网络进行分析,结果显示,在转录层面上,IB组与dsi PTHR1组、dsi PTHR2组分别鉴定出1231个、1683个差异表达基因,而dsi PTHR1组与dsi PTHR2组仅鉴定出14个差异表达基因。其中,i PTHRs在干扰后主要引起了能量与营养代谢(如异柠檬酸脱氢酶、ATP结合盒蛋白、果糖1,6-二磷酸酶)、表皮结构成分(几丁质合酶1、几丁质脱乙酰基酶、表皮蛋白若干家族成员)相关基因表达量改变,同时保幼激素代谢相关的保幼激素酯酶、保幼激素环氧水解酶表达量也明显上调;在蛋白层面上,IB组与dsi PTHR1组、dsi PTHR2组分别鉴定出34个、39个差异表达蛋白,而dsi PTHR1组与dsi PTHR2组鉴定出41个表达蛋白(主要由于dsi PTHR1组异常表达所致)。与转录组学测序一致的是,与对照组相比,干扰组的差异表达蛋白也集中在能量与营养代谢、表皮结构成分上,其中多个基因(如ATP合成酶亚基delta、肌钙蛋白亚基T、CPR18、CPAP1-H等)在转录、蛋白水平上均显示出下调趋势,表明了i PTHRs可能通过影响能量代谢影响赤拟谷盗的羽化行为,并造成表皮成分的合成异常;最后,通过对不完全变态昆虫褐飞虱i PTHRs的序列分析及RNA干扰功能验证,我们发现,其两个i PTHRs为物种内复制,序列相似性高达53.06%,这两个受体与赤拟谷盗i PTHR2更为接近,结合其它物种的i PTHRs多序列比对分析,表明i PTHR2可能是昆虫中的祖先基因;RNA干扰结果显示四龄若虫干扰i PTHR1和i PTHR2后部分个体蜕皮羽化失败,存活率分别降低至26.7%和55.5%,表明了i PTHRs在不完全变态昆虫褐飞虱的生长发育过程中也承担着至关重要的作用。
其他文献
在真核生物中,线粒体基因组与核基因组在生物发生和合成方面相互协同合作。线粒体基因转录、RNA加工和翻译都需要不同的核基因蛋白参与。粟酒裂殖酵母(Schizosaccharomyces pombe)中有两个线粒体蛋白Trz2和Mtf2。它们是核基因编码蛋白,并且在线粒体中扮演着重要的角色。我们实验室之前证明了 Trz2参与S.pombe线粒体的tRNA前体、mRNAs和rRNAs的加工。之前也证明了
研究背景Cav1.2钙离子通道是心脏兴奋-收缩偶联过程中重要的的Ca2+操纵蛋白之一,激酶和磷酸酶控制的Cav1.2磷酸化水平平衡是维持其正常功能的关键。已知PP2A是参与调节Cav1.2去磷酸化的一种磷酸酶,但是其具体的调节机制还不是十分清楚。由于PP2A全酶的结构非常复杂,虽然PP2A的催化亚基只有两种亚型,但决定全酶作用底物特异性的调节亚基之种类却很庞大,这就使得细胞中PP2A的种类有几十种
随着微电子器件的集成密度迅速增长,巨大的焦耳热对器件的可靠性和运行速度带来了挑战,同时也带来了极大的能源浪费。磁子是磁性材料中自旋的集体激发–自旋波的能量量子,由于其在能量和信息传递过程中不需要电荷载流子,从而为无耗散的信息科技提供了潜在可能,引起了研究者们的广泛关注。近年来,在铁磁材料中,由于Dzyaloshinskii-Moriya(DM)相互作用起着矢量势的作用,磁子霍尔效应以及拓扑磁子绝缘
移动轨迹数据是地理时空大数据的重要组成部分,同样存在时空分布规律与尺度特征,且其海量化、多元化、实时化、网络化等特征,使得数据处理、传输与分析更加需要自动综合与尺度变换的支持。与其它地理空间数据相比较,轨迹数据同时具有独特的时间、空间与语义特征,其信息化简与特征提取有着不同的自动综合策略。本研究主要针对当前定位技术与位置服务所面临的轨迹数据,以GPS轨迹为对象,采用时空与语义信息融合的手段,通过引
位于高等教育金字塔顶端的精英教育,对于培养社会精英具有极其重大的意义。然而,现代高等教育历史进程中的规模大扩张对精英教育造成了前所未有的危机,主要表现为在扩张之前的精英高等教育阶段,高等教育全部的教育目的就是让学生成为承载高深知识和养成健全心智的精英,而当扩张之后尤其进入大众高等教育阶段以后,精英教育萎缩成高等教育系统中一个极小的部分,而不再是全部。随之,平等主义的冲击对大学精英主义价值观造成威胁
宇宙浩瀚,始于毫末。这“毫末”就是组成宏观物质世界的基本粒子。而专注于研究微观世界中基本粒子的组成、性质和相互作用领域的学科便是粒子物理学。在上个世纪70年代左右,量子色动力学(QCD)与电弱统一理论相继建立与发展。标准模型理论将二者相结合,发展至今已经趋于成熟。2012年7月4日,欧洲的核子研究中心(CERN)正式宣布:发现希格斯(Higgs)粒子,这一发现更是标准模型乃至整个粒子物理学科的重要
自从2003年,Belle实验合作组第一次在实验上发现了X(3872)的奇特态之后,随着高能物理实验技术的不断提高,越来越多的含隐粲(cc)和隐底偶素(bb)的强子态被发现,比如:X(3915)、Y(4260)、Z(3930)、Zb(10610)、Zb(10650)等XYZ粒子。理论上四夸克态是这些XYZ粒子的一种可能解释。其实在1997年D.V.Petrov和M.Polyakov就提出了可能存在
随机系统是指系统的输入、输出和扰动有随机因素,或者系统本身有一些不确定性.众所周知,随机系统在科学、经济、物理、控制等领域具有广泛地应用.世界上许多学者都致力于研究随机系统的各种性质.特别地,稳定性和控制理论一直是有趣和重要的课题,因为他们能够描述随机系统的显著特征.切换系统作为一类混合系统,由一系列的子系统和控制系统间交换的交换信号构成.另一方面,在实际系统中不可避免地会遇到扰动,这意味着随机模
人体的基因组始终暴露在内源及外源的各种DNA损伤因子下,而这些DNA损伤因子很有可能导致DNA损伤。DNA损伤如果不被有效修复,将会影响DNA复制、转录及染色体结构,甚至导致机体产生多种疾病,如癌症。为了修复DNA损伤,人体进化出了DNA损伤修复系统以应对各种DNA损伤试剂的威胁。碱基切除修复作为人体最为重要的DNA损伤修复系统之一,在修复烷基化、氧化、AP位点及单链断裂的DNA损伤中发挥重要作用
无碱基位点内切酶(Apurinic/apyrimidinic endonuclease 1,APE1)是哺乳动物细胞中的一种重要的多功能核酸酶,参与DNA碱基切除修复和氧化还原调控等重要的细胞生物学功能。APE1功能受损或调控紊乱是多种退行性疾病的易感因素,其特殊亚细胞定位模式与癌症的分期、预后较差相关联。细胞中存在精密的调控机制以确保APE1在正确的时空范畴行使相应的功能。本课题研究旨在发现新的