论文部分内容阅读
在光学生物传感领域,表面等离子共振(Surface Plasmon Resonance,SPR)技术是分析生物分子相互作用的一种先进手段,具有实时检测、无需标记、耗样少等特点,已成为生物检测的常用工具。传统的具有SPR效应的生物传感器需要棱镜和复杂的光学系统,这种装置灵敏度高、稳定性好,却不能实现小型化和集成化;且一些低浓度生物分子很难被传统的SPR传感器检测出来。1998年,Ebbesen等人报道了贵金属纳米孔阵列的超透光性,并归因于金属纳米孔阵列的表面等离子共振效应。贵金属纳米结构的SPR效应对表面折射率的变化具有较高的灵敏度,被广泛应用于高灵敏度的生物检测领域。但目前的一些构筑图案化金属纳米结构的方法,不能有效的提供大面积具有周期性的阵列结构,阻碍了其工业化的发展。因此,如何构筑大面积的、低成本的金属纳米阵列结构,如何提高该阵列结构在生物检测中的灵敏度和选择性是其中研究的主要方向。针对上述金属纳米阵列结构构筑及其应用中存在的问题,本论文提出以下主要研究目的:构筑多种具有不同形貌低成本、大面积的金属纳米阵列结构,对其结构的尺寸、高度、堆积密度等一系列参数进行调控,并用于对某种特定分子的检测,以期实现高灵敏度的生物检测。研究思路:利用乳液聚合的方法合成了粒径均一的聚苯乙烯纳米微球(PS)结构并以此结构为模板,通过纳米球刻蚀技术(Nanosphere lithography,NSL)、磁控溅射(Magnetron sputtering,MS)、反应离子束刻蚀(Reactive ion etching,RIE)以及金属辅助化学刻蚀(Metal-assisted chemical etching,MACE)等技术构筑多种不同形貌的金属纳米阵列结构,并对该阵列结构的长度、直径等参数进行精细调控,实现可控制备。通过紫外-可见吸收、TEM、SEM等表征手段对上述阵列结构进行光学性质的表征。随后,利用这些结构的SPR效应对罗丹明分子(R6G)进行拉曼表征。本论文主要研究内容和成果如下:(1)合成PS纳米微球并以此为模板构筑多种形貌的金属纳米阵列结构:通过乳液聚合法制备粒径300 nm的具有单分散性的PS;采用手工以及LB膜分析仪器提膜两种方式制备出大面积的PS纳米球密排单层膜。以此为模板,利用NSL、RIE和MS技术分别构筑了金包覆的球状、三角点阵以及网格状的阵列结构,并对其光学性能进行了初步表征。其中,我们对金网格阵列结构的形貌和光学性能进行了重点研究。通过调整RIE和MS时间对金网格阵列结构的厚度、直径等参数进行调控,实现该阵列结构的可控制备,研究结果表明金网格阵列具有很好的SPR效应,并且金网格随着刻蚀时间和溅射时间的增加,SPR峰位出现蓝移。通过改变金网格阵列孔径的大小和金膜的厚度来实现其光学SPR性质的可控调节。这种可调控的具有SPR效应的金网格结构,将会在生物检测体系中有广泛的应用。(2)MACE法构筑具有减反射增强效应的硅纳米柱阵列结构,并实该阵列长度、直径的精细调控:本章中,主要利用上一章构筑的金网格阵列结构为模板,结合金属辅助化学刻蚀方法制备硅纳米柱阵列结构,并通过控制RIE和MACE的时间调控Si纳米柱阵列结构的直径、高度等参数。研究结果表明,Si纳米柱阵列结构的直径随着RIE时间的增加而减小;相应的高度随着化学刻蚀时间的增加而增加。实现了长度和直径的精细调控。更为重要的是Au/Si纳米柱阵列结构具有显著的减反射性能和表面等离子增强作用,可以用于光伏器件的构筑以及生物检测。(3)具有SPR效应的纳米阵列结构对罗丹明进行检测:选择结构参数可精确调控的金网格和Si纳米柱阵列结构作为研究对象,以罗丹明分子作为检测目标,通过表面增强拉曼光谱实现阵列结构对特定生物分子的高灵敏度检测。研究结果表明构筑得到金网格和Si纳米柱阵列结构对R6G分子均有拉曼增强效应,其中金网格阵列结构的拉曼增强效果尤为明显,对R6G的最低检测浓度可达10-12M,增强因子在108数量级,大大提高了检测灵敏度。