【摘 要】
:
在聚焦离子束溅射刻蚀工艺中,灰度图常常被用来加工三维曲面微结构,通过定义每个像素点的灰度值控制离子入射点的驻留时间。灰度值的准确计算对于加工出满足精度要求的三维曲面微结构非常重要。但是由于非线性溅射产额、再沉积等因素的影响,加工轮廓与理想轮廓会产生一定的偏离,给灰度值的确定带来了极大的困难,为了发展一种准确计算灰度值的通用方法,论文开展了如下研究:1、开展了聚焦离子束灰度图铣削三维曲面微结构探索实
论文部分内容阅读
在聚焦离子束溅射刻蚀工艺中,灰度图常常被用来加工三维曲面微结构,通过定义每个像素点的灰度值控制离子入射点的驻留时间。灰度值的准确计算对于加工出满足精度要求的三维曲面微结构非常重要。但是由于非线性溅射产额、再沉积等因素的影响,加工轮廓与理想轮廓会产生一定的偏离,给灰度值的确定带来了极大的困难,为了发展一种准确计算灰度值的通用方法,论文开展了如下研究:1、开展了聚焦离子束灰度图铣削三维曲面微结构探索实验,利用原始灰度图加工了预设的三维曲面微结构。在原始灰度图的制作中,默认灰度值与微结构的加工深度成正比关系。在对加工结果的分析中,探讨了加工结构的轮廓误差与微结构深宽比的相关性、轮廓误差与微结构具体函数形式的相关性。根据微结构的形状特征,结合溅射产额曲线以及离子入射角,解释了各个微结构对应轮廓误差曲线具有一定差异性的原因。2、根据轮廓误差曲线的变化规律,提出了基于误差补偿思想的三维曲面微结构轮廓控制方法。该工艺方法采用单灰度图“一次成型”的加工模式,并将灰度值定义为原始灰度值与其补偿量的叠加。建立了误差通式作为原始灰度值的补偿量,误差通式中含有相应的自适应系数,可以通过调整对应自适应系数,对灰度值补偿量进行修正。3、建立了基于灰度图的聚焦离子束溅射刻蚀微纳曲面结构工艺模型,将遗传算法-连续元胞自动机方法(GA-CCA)引入到仿真模拟器的建模以及灰度图的优化中。在该模型中,将反应空间和材料基底抽象为二维的元胞空间,引入占有率的概念使得元胞的变化可以连续,输入相应的灰度图即可进行模拟过程。利用遗传算法对灰度值进行优化,将误差通式中的自适应系数定义为一组染色体,生成相应的自适应系数种群,通过比对每次运算模拟轮廓与理想轮廓的偏差,计算出每组染色体的适应度,对自适应系数种群进行选择、交叉、变异操作,从而得到最佳的误差通式作为灰度补偿值。4、对该曲面微结构轮廓控制方法进行了验证,利用优化后的灰度图加工了探索实验中预设的曲面微结构,分析了不同微结构对应的自适应系数具有差异性的原因,进一步论证了该误差通式具备较强的自适应性。最后,利用原始灰度图和优化灰度图加工了随机三维曲面微结构,对比了优化前后的轮廓曲线,对该轮廓控制方法的通用性进行了验证。
其他文献
随着我国城乡融合实践的纵深推进,城镇化、现代化正深刻地改变着乡村的风貌,乡村振兴政策支持下的资本要素流动转移成为乡村空间转型的主要促动力。日渐显现的闲置空间正是当前乡村复兴蜕变下一种具有代表性和典型性的空间现象。论文关注的这类空间不同于具有空间年代指向的城市老旧房产、工业遗址,也不同于人口外流、整体退化的萧条“空心村”,是当下乡村建设进程中的产物。理性观察资本关联下的乡村闲置空间现象,分析其产生的
本文以耐火材料氧化镁为基体,以CaCO3、Al2O3为矿化剂,木粉为造孔剂,采用压制成型法制备了镁基陶瓷型芯,研究了矿化剂、造孔剂、制备工艺、烧结工艺等对型芯室温抗弯强度、烧结收缩率、气孔率、断口形貌和物相组成的影响,测试了型芯在醋酸溶液中的溶解溃散性。以400目氧化镁为基体,不同粒径Al2O3为矿化剂,随Al2O3粒径减小,陶瓷型芯抗弯强度提高,但溶解溃散性变差。以150目、200目和400目氧
传统冯诺依曼架构中处理器与存储单元之间的数据通信开销会导致性能下降和能耗增加,这被称为内存墙。为了克服该瓶颈,可以将计算处理能力集成到内存中,称为存内计算(Computing In Memory,CIM)。基于磁随机存储器(Magnetic Random Access Memory,MRAM)的CIM在访存速度和电源效率方面展现出极高的优势,是人工智能边缘设备中高能效计算操作的有效实现方法。当前基
以碳化硅为代表的先进陶瓷材料凭借高杨氏模量和高抗压强度等良好的力学特性,使其无论在传统工业领域还是新兴微电子领域都具有广阔的应用前景,但与此同时,碳化硅这类硬脆性材料,常因内部或者表面微裂纹,发生毫无征兆的突然破坏,对结构缺陷极其敏感的特点限制了其进一步的应用。另一方面石墨烯正以优秀的力学性能和超大的比表面积展现了作为增强相,可以显著增强脆性基体力学性能的巨大潜力。本文以石墨烯增强碳化硅复合材料为
悬架作为现代卡车中的重要组成部分,其运动学特性直接影响卡车的平顺性和操纵稳定性,其结构强度对卡车在运行中安全性有着极其重要的影响。所以从运动学、动力学方面对悬架进行分析优化是卡车设计开发工作的核心方向之一。本文针对麦弗逊悬架在大型非公路车辆上应用关键技术,建立整车多体运动学模型,编写针对悬架硬点坐标的参数化分析与优化软件,并对悬架硬点进行筛选与优化。采集典型道路工况,建立整车多体动力学模型,获取悬
随着氧化石墨烯(Graphene Oxide,GO)大规模的生产和应用,其在自然环境中的生态效应也越来越受到重视。大量研究表明GO暴露在自然环境中会对生态系统的植物、动物和微生物产生不利影响。目前,已在污水处理厂进水和活性污泥固体中检测到了石墨烯基纳米材料的存在,而GO暴露对复合生态系统的影响目前仍鲜有报道。课题组在前期研究中发现,垂直流人工湿地对进水中GO可实现有效去除,而高浓度GO暴露对湿地脱
纳米聚苯乙烯(Nanopolystyrene,PS NPs)的工业化生产和聚苯乙烯塑料的破碎降解,都增加了PS NPs的环境释放。已有研究表明,PS NPs可通过污水管网进入污水处理系统,影响活性污泥内源呼吸和产甲烷能力,降低处理效能。此外,PS NPs还能诱导生成过量活性氧,对微生物与植物代谢造成负面影响。人工湿地是由基质、微生物、植物协同发挥作用的生态处理工艺,对常规污染物和纳米颗粒等新型污染
四溴双酚A(Tetrabromobisphenol A,TBBPA)作为典型的溴类阻燃剂,稳定持久,可随大气迁移扩散至水体中,其在生物体摄取水过程进入体内,对各个器官产生一定毒害,因此去除水体中的TBBPA是一个亟需解决的问题。电化学还原技术以电子作为反应介质,无需投加试剂、灵活高效常被用于去除水中卤代污染物。碳毡常被用作电极载体,因其较高的析氢过电位及产H*能力,需进一步改性以提升电极活性。本文