论文部分内容阅读
近年来,随着人工智能、物联网和大数据等新一代信息技术成为推动社会经济发展的关键基础和重要引擎,使得人们对信息存储技术水平的要求日益增高。基于垂直磁各向异性(PMA)材料的自旋转矩磁性随机存取存储器(STT-MRAM)由于拥有较高的磁存储密度、良好的热稳定性等优点,使得PMA磁性薄膜成为了当前的研究热点。本文以Co基多层纳米薄膜为主要研究对象,通过多种调控手段,对磁性多层膜的磁各向异性和磁化翻转过程进行了系统性的研究与分析。本研究对垂直磁性存储技术和磁传感器技术的发展具有重要意义。本文的主要研究内容如下:1、研究了沉积周期﹑中间层厚度和退火温度等参数的变化对[Ta/CoFe]n多层膜面内磁各向异性、薄膜微观结构及高频磁特性带来的影响,并利用CoFe/Cu/CoFe结构的人工反铁磁层(SAF)对自旋阀的磁电阻率和交换偏置场进行了系统性的调控。结果表明薄膜的高频性能对层周期数、Ta层厚度和退火温度都有较强的响应,并发现SAF结构能够显著的提升自旋阀薄膜的交换偏置场,而自旋阀的磁电阻率则更依赖于真空磁热退火温度。2、研究了层周期数、Co层厚度、薄膜图案化和低温对[Pt/Co]N多层膜的垂直磁各向异性和翻转场分布的影响。发现样品的PMA会随着周期数的增加变强,而Co层厚度的增加则会减弱薄膜的PMA,两种调控方法都会使磁畴的成核场朝着+Hr移动,而湮灭场朝着-Hr移动,可逆翻转过程变长,不可逆翻转比例下降。另外与连续膜相比,[Pt/Co]N多层膜线阵列和点阵列的矫顽力和剩磁比变大,成核场和湮灭场分布位置越来越近,可逆翻转范围变短,而且不同的图案结构对翻转场分布产生的影响也不同。并且发现在300K以下时,[Pt/Co]N多层膜表现出更强的垂直磁各向异性。3、研究了CoFe层的厚度、样品结构和磁热退火条件对[Pt/CoFe/MgO]n多层膜的垂直磁各向异性、磁畴结构和磁化翻转过程的影响。结果发现样品的PMA和不可逆翻转场分布位置强烈依赖于CoFe的厚度,并且当样品结构反置时,薄膜内的磁畴宽度发生了明显的变化;经过适当温度的退火能够有效改善样品的PMA,而且[Pt/CoFe/MgO]10薄膜的PMA对低温的响应程度要强于[Co/Pt]n多层膜。4、研究了重金属覆盖层的材料种类、厚度和溅射功率对CoFe多层膜PMA的影响。结果表明[Pt/CoFe/X]10垂直磁各向异性的强弱取决于重金属覆盖层X的5d电子数,覆盖层材料的5d电子数越少,薄膜的可逆翻转过程越长;并且发现通过调节覆盖层厚度和溅射功率能够有效的调控样品的PMA和翻转场分布。