论文部分内容阅读
随着列车轴重和运量的不断增加,钢轨与车轮之间的服役条件变得更加复杂和恶劣,钢轨与车轮动态接触过程中容易产生波磨、核伤和剥离等各种缺陷,钢轨病害会给列车的平稳运行造成安全隐患,因此必须要及时去除钢轨表面缺陷。钢轨铣-磨列车凭借其优良的作业精度和切削能力已逐渐成为铁路养护行业使用的重要轨道修复设备。随着我国铁路行业的持续快速发展,对钢轨铣-磨列车的需求与日俱增,目前我国对钢轨铣-磨列车仍然主要依靠从国外进口,关于钢轨铣-磨修复加工机理及修复后轮/轨对偶匹配性能尚缺乏系统性研究。本文面向钢轨铣-磨修复并围绕钢轨材料高温动态力学性能分析及本构模型建立、钢轨铣-磨力热特性和表面完整性变化规律以及机加工后轮/轨对偶匹配等核心问题开展系统性研究,有助于提高钢轨表面修复质量并改善车轮和钢轨的服役性能,从而提高列车运行的安全性、稳定性和可靠性,具有重要的学术价值和实际意义。主要研究工作包括:(1)对U71Mn钢轨材料在高温和大应变率条件下的动态力学性能进行系统性研究并探讨钢轨材料的应变率敏感效应、温度敏感效应、应变硬化效应及微观组织演化规律。同时,建立钢轨材料的原始Johnson-Cook本构模型并对其进行修正,借助VUMAT用户材料子程序对修正的钢轨材料本构模型进行二次开发,为钢轨铣-磨有限元仿真研究提供理论和技术支撑。结果表明,钢轨材料的流动应力具有温度敏感性和应变率敏感性,并且温度对钢轨材料流变行为的影响比应变率对其影响更加显著;压缩变形温度和应变率对钢轨材料的显微组织有显著影响;修正的Johnson-Cook本构模型可以良好地反映U71Mn钢轨材料在高温大应变率条件下的流变行为。(2)研究U71Mn钢轨材料铣-磨力热特性。以钢轨铣-磨应用工况为设计参考并自主研发和搭建可靠的钢轨铣-磨专用实验台,通过正交试验设计分别建立钢轨成形铣削力模型和成形磨削力模型,并用F检验法对模型的可靠性进行验证。基于线热源法分别建立钢轨成形铣削温度场模型、成形磨削温度场模型及铣-磨联合温度场模型。同时,通过已经进行二次开发的钢轨材料修正Johnson-Cook本构方程建立钢轨铣削和磨削温度有限元模型并进行分析。结果表明,建立的铣削力和磨削力数学模型均具有很高的可信度;建立的温度场数学模型能够良好反应钢轨加工过程中的温度变化规律;建立的钢轨铣削和磨削温度有限元模型能够良好反应钢轨加工过程中的温度变化趋势。(3)使用单因素实验法分别探究U71Mn钢轨材料成形铣削和和成形磨削表面完整性变化规律并对其进行机理分析,具体的表征参量包括已加工表面粗糙度和表面形貌、表层残余应力、亚表面塑性变形层及加工硬化。同时,将不同加工参数下获得已加工表面粗糙度作为训练样本并基于RBF人工神经网络分别建立钢轨成形铣削和成形磨削表面粗糙度预测模型,从而为钢轨修复提供实验和理论依据,并为机加工后轮/轨材料的对偶匹配研究打下基础。结果表明,钢轨成形铣削和成形磨削后表层横向残余应力和纵向残余应力均表现为压应力,并且纵向残余应力大于横向残余应力;钢轨成形铣削和成形磨削后发生不同程度的亚表面塑性变形并呈现出不同程度的加工硬化现象;磨屑形态主要呈现为带状磨屑,也伴随少量球形磨屑,且球形磨屑的氧化程度最高;所建立的RBF神经网络对已加工表面粗糙度具有良好的预测性能。(4)系统性研究机加工后轮/轨材料对偶匹配性能。对U71Mn钢轨进行变参数磨削,对CL60列车车轮进行变参数车削,并检测其表面粗糙度、显微硬度和亚表面塑性变形层,然后在干式条件下通过变换轮/轨摩擦副分别对机加工后轮/轨材料的滑动摩擦磨损性能及滚-滑摩擦磨损性能进行系统性研究,从摩擦系数、磨损量、亚表面塑性变形层和磨损表面形貌等方面分析机加工后轮/轨材料表面完整性对摩擦磨损特性的影响规律。结果表明:机加工后轮/轨材料进行滑动接触后,钢轨试块塑性变形层厚度的增加幅度大于车轮试环;钢轨材料的磨损损耗远大于车轮材料;钢轨试块的表面损伤比车轮试环严重。机加工后轮/轨材料进行滚-滑接触后,钢轨试环的塑性变形层厚度大于车轮试环;车轮材料的磨损损耗远大于钢轨材料;车轮试环的表面损伤比钢轨试环严重。无论是滑动接触还是滚-滑接触,不同机加工参数的轮/轨试样配对后产生不同的摩擦系数,且初始表面粗糙度大的车轮试环在对磨过程中产生相对更大的摩擦系数;钢轨和车轮试样的表面硬度均显著提高;机加工后轮/轨材料的表面粗糙度、显微硬度及亚表面塑性变形层综合影响其对偶匹配性能,具有适当表面显微硬度和表面粗糙度的试样配对后其总磨损量最小。