论文部分内容阅读
目前,城市轨道交通列车大都采用电能作为动力来源,通过交流牵引电机驱动列车运行,部分城市采用更先进的直线电机牵引。本文以多数城轨交通所选的交流牵引机车为载体进行研究。随着经济发展及城市的扩大化,大众对轨道交通的需求更加迫切,乘客对所乘车辆速度及舒适性的要求日益提高,为了兼顾行车速度和乘车舒适性,对车辆的结构设计及牵引电机的控制技术也提出了更高的要求。本文通过对交流牵引控制系统的控制技术进行分析及优化,确定交流牵引系统的择优控制方式。在交流牵引系统的调速过程中,每一个速度点都要对应一个合适的输出力矩,采用VVVF(Variable Voltage and Variable Frequency)变频调速系统进行牵引电机的转速控制可以达到这一要求。基于PWM方式的VVVF调速控制系统是一种开环控制方式,在牵引传动调速过程当中,可以保证定子频率变化不超过电动机颠覆点的要求,不影响车辆调速时牵引系统的稳定性,缩短车辆启动和制动、调速的动态响应时间。控制方法选择磁场定向矢量控制方法,在传统SPWM控制技术的基础上进行改进,加入SVPWM控制技术。SPWM技术以电源为出发点,只能生成一个可调频可调压的波形,当牵引电机参数变化后,VVVF控制系统无法进行实时调整,电机参数发生变化,输入电源不变,导致参数不匹配,影响电机调速稳定性。选用基于SVPWM方式的VVVF控制系统,可以随时检测控制系统当中,电气参数的振荡,当检测到系统电压,或者负载电压不在稳定状态下,基于SVPWM方式的VVVF控制系统会展现其闭环控制的控制特性,将车辆的速度以及牵引电机的输出力矩作为被调量,并作为闭环控制中的反馈信号,进行闭环控制,达到对系统的变化量做出快速的响应的目的。为了实现城轨车辆交流牵引系统的闭环控制,达到一种高性能运行状态,在控制系统的设计中,根据牵引系统的特点,可以设置不同的闭环控制反馈量,其中一种是将力矩作为反馈信号,力矩值的获得可以通过检测系统直接测定,或者结合系统特点进行估算,然后将这两种方法得到的力矩值输入到闭环控制环节的力矩调节器当中,通过差分运算,得到闭环控制系统中的偏差信号。还可以通过间接的测量与给定信号相关的物理量,如气隙磁通、定子电流,测量其实际值,将其作为反馈信号也可以达到控制牵引电机输出力矩的目的。城轨车辆交流牵引系统性能的优劣取决于牵引电机性能的优劣,牵引电机动态性能越好,调速系统调速时间和调速的稳定性越高。现阶段,城轨车辆牵引系统中的控制方式有两种,分别是采用矢量变化思想的磁场定向矢量控制和直接转矩控制。为了实现交流牵引系统在调速过程中的良好的电机牵引特性,本文将重点研究基于SVPWM调制技术的磁场定向矢量控制方式,判断此种控制方式是否能实现高性能的交流牵引调速。在证明基于SVPWM调制的磁场定向矢量控制方式的过程中,将会使用MATLAB/SIMULINK进行系统城轨车辆交流牵引系统仿真模型的建立,并进行验证性试验,通过分析仿真实验波形来验证矢量控制方式在城轨交流牵引系统中的可行性。