论文部分内容阅读
为了更好地平衡电网负荷和缓解城市供电压力,冰蓄冷空调在我国得到了日益广泛的应用。如何最优化的利用冰蓄冷空调,充分发挥冰蓄冷空调移峰填谷的优势,使用户在经济上达到最大的利益,已经成为发展冰蓄冷空调的一个重要问题。近年来,优化控制策略已经逐渐取代了以往简单的单纯依靠主机或冰槽的控制策略,成为冰蓄冷空调系统的主要控制策略。本文以广州大学城的外融冰盘管式冰蓄冷空调系统为研究对象,通过对如何实现冰蓄冷空调优化控制的研究,提出了冰蓄冷空调系统优化控制的一般过程,给出了进行负荷预测的方法以及负荷优化分配的数学模型。本文首先介绍了广州大学城采用的冰蓄冷空调系统,包括大学城区域供冷系统、第二冷站冰蓄冷主要设备、运行工况和自控系统,并采集了此工程2007年5~7月份的室外温度和冷负荷数据,将这些数据作为建立负荷预测模型的依据。其次,准确的逐时负荷预测是实施冰蓄冷系统优化控制的重要前提。本文根据人工神经网络原理,建立了室外温度预测的神经网络模型,使得24小时提前逐时温度预测平均相对误差从ASHRAE计算方法的5.21%降低到了0.71%;针对工作日和假日两种不同日期类型,分别建立了日总冷负荷的神经网络模型,对工作日日负荷预测的平均相对误差是4.71%,对假日日负荷预测为8.62%,这一结果基本满足实际应用的要求;在温度预测模型的基础上,进一步建立了空调提前24小时的逐时负荷ANN预测模型,计算该模型平均绝对误差为188Rth,平均相对误差为5.15%,期望相对误差为2.08%。最后,建立了优化控制运行费用最小化的数学模型并进行了模型求解。求解结果表明,在日冷负荷小于蓄冰槽蓄冰总量且逐时冷负荷小于融冰供冷最大功率时,优化控制就是融冰单独供冷,蓄冰槽蓄冰量等于预测的日冷负荷再乘以一定的冗余系数。而在日冷负荷大于蓄冰总量,且有逐时负荷大于融冰供冷最大功率时,优化控制就是根据剩余冰量,在保持单台制冷机负荷系数0.7以上(一般为0.8)启动相应冷水机组台数,通过调节融冰供冷来满足时刻负荷需求,蓄冰槽冰量全部蓄满。同时结合自控系统,在文章的最后一小节给出了冰蓄冷空调系统的一个优化控制方案设计,以此可以用来指导冰蓄冷空调控制的设计应用。