论文部分内容阅读
地震灾害给人类造成了巨大的人员伤亡和经济损失。为了提高土木工程结构在地震中的安全性,深入研究结构的抗震性能是十分必要的。混合试验方法是研究结构抗震性能的重要手段之一。通过取出结构的关键部位作为试验子结构,其他部分作为数值子结构的方式,混合试验方法在很大程度上解决了大尺寸试件场地、加载设备和经费的限制问题。但是对于大型复杂结构,在强震作用下进入非线性的构件数量将非常可观,取出全部关键构件作为试验子结构往往是不现实的。这将导致部分可能产生非线性的关键构件只能作为数值子结构进行分析,这也就对数值子结构模拟的准确性提出了较高要求。就混合试验而言,数值子结构可以基于现有的有限元方法和材料本构模型建立。本文的研究重点是在混合试验数值子结构模型确立后,通过模型更新方法提高数值子结构的准确性。目前,模型更新混合试验方法多集中于构件本构模型(层模型)参数的识别与更新。基于层模型的分析会带来较大误差,且无法了解构件的局部反应。同时,目前对于钢筋混凝土结构还没有能包含构件尺寸、边界条件、轴压比、配箍率等一系列因素在内的广义上的构件本构模型。而针对不同的构件的狭义构件本构模型,参数难以更新,限制了模型更新混合试验的应用与推广。本文从最基础的材料层次出发,提出基于混凝土本构模型参数更新的结构混合试验方法。主要研究内容和结论如下:1.通过定义本构参数与非本构参数来明确在混合试验中模型更新的适用条件。在已有混凝土本构模型的基础上,通过引入“配箍率”作为非本构参数,推导获得可用于模型更新的非约束混凝土与约束混凝土的统一本构方程,从而提高混凝土本构模型参数更新方法在钢筋混凝土结构混合试验中的通用性。2.对递推最小二乘法、卡尔曼滤波器、隐性卡尔曼滤波器的基本原理及三者之间的关系进行阐述。分析隐性卡尔曼滤波方法中基于比例修正采样的UT变换的精度,并探讨比例修正采样中参数选取对条件均值及方差估计精度的影响,最终获得一维高斯随机变量达到四阶精度时采样参数的取值。针对模型更新混合试验,对OpenSees源代码进行修改,提出嵌入OpenSees有限元软件的混凝土本构参数识别方法,从而解决以构件恢复力作为观测量的更为复杂的非线性系统参数估计问题。3.通过钢筋混凝土柱的单调静力加载试验对所提出的混凝土本构参数识别方法进行验证。之后,通过单层单跨钢筋混凝土框架的混合试验对所提出的基于混凝土本构模型参数更新的混合试验方法进行试验验证。试验结果表明,所提出的嵌入OpenSees的混凝土本构参数识别方法在多种试验工况下的收敛值接近、其方差较小,具有较高的鲁棒性和可靠性。与无更新的混合试验相比,所提出的基于混凝土本构模型参数更新的混合试验方法在准确性上有较大幅度的提高。模型更新混合试验与标准混合试验的试件损伤状态不同,在相同地震荷载作用下,标准混合试验对结构抗震性能的估计不足。4.采用所提出的基于混凝土本构模型参数更新的混合试验方法研究薄壁高墩大跨钢筋混凝土连续刚构桥的抗震性能。结果表明,对于大型复杂结构,混凝土本构模型参数识别方法仍具有较快的收敛速度、较高的鲁棒性和可靠性;与简单结构相比,所提出模型更新混合试验方法可更大程度提高数值子结构的准确性。即使在较大模型误差的情况下,所提出的模型更新混合试验方法仍然能够对数值子结构的准确性有较大幅度提高。通过参数初值的调整,可以明显降低模型误差影响,更进一步提高数值子结构的精度。薄壁空心墩的主要破坏形态为弯剪破坏,其中剪切破坏也占有较大比重,并伴有箍筋拉断的破坏现象。当采用数值模拟方法分析类似薄壁构件时需考虑剪切变形的影响。