抛物型方程并行差分格式与非完美接触界面问题的迭代方法

来源 :中国工程物理研究院 | 被引量 : 0次 | 上传用户:jwpvinson
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文的主要内容包括三部分:(1)守恒型并行差分格式设计与理论分析;(2)保正型并行差分格式设计与理论分析;(3)非完美接触界面问题的迭代方法设计与理论分析.在第一部分中,通过分析具有无条件稳定、二阶数值精度的一维并行差分格式,给出了一个推广形式的并行差分格式,首先,对于一维问题提出了一种加权形式的数值流以及权重的选取范围,然后将此格式推广到二维,最后将格式推广到n-维(n ≥3).理论证明了此守恒型并行差分格式是无条件稳定的,并具有二阶空间精度.在最后给出了数值实验,结果表明此类格式是无条件稳定的二阶格式,并且具有守恒性与内在并行性,从而验证了理论分析的正确性.在第二部分中,首先引入”基于节点的类隐格式”的概念,在结合前人研究成果的基础上,将区域分解框架归纳为两大类:自上而下(UP-DOWN)模式与自下而上(DOWN-UP)模式,即分别按照体-面-线-点与点-线-面-体两种顺序依次计算网格上的未知量.本文沿此这两条设计思路对抛物型方程分别给出了一维,二维,三维以至高维的格式设计.其中的证明可以归结为一维情形的证明,特别的,本文给出了一维格式的稳定性分析,并给出并行格式保正的条件,并且在离散紧性框架下给出了数值解强收敛到原始偏微分方程弱解的理论分析.在最后进行数值实验验证理论结果,数值结果表明此类格式是无条件稳定的二阶格式,并且具有保正性与内在并行性.在第三部分中,讨论了一类非完美接触的界面问题,基于区域分解的思想设计了一种迭代格式,给出了迭代格式的收敛性证明,并针对一类特殊的区域给出了收敛速度的估计;此迭代格式是呈几何速度收敛的,而且迭代过程中保持解的极值原理成立.最后通过数值实验验证了理论分析的正确性与算法的稳健性.
其他文献
发展高效的波动方程数值求解方法具有重要的现实意义,它影响到生产与生活的方方面面。用计算机求解偏微分方程同时涉及空间和时间两方面的数值离散。目前,针对空间部分的离散得到了广泛的研究。相比空间离散,对时间离散的研究还比较少。时间的离散也会引入数值频散,研究与空间离散相匹配的时间离散格式具有重要的价值。本文关注波动方程的时间离散方法,在传统辛算法中加入额外的空间离散算子,用来弥补数值计算过程中由于时间离
本文主要研究1+1维,即时间和空间都是一维的完全可积非线性偏微分方程解的长时间渐近行为.这些方程在数学物理中有着广泛的应用,为了模拟实际应用并理解一些非线性现象,考虑衰减的以及非消失边界条件的初值问题和初边界值问题是很有必要的.第一章简要回顾了近几十年来Riemanm-Hilbert方法在可积系统中应用的一些重要进展,并给出本文的主要结果和对未来工作的展望.第二章讨论扩展的高阶修正KdV方程的初值
扩散方程在工业制造、油藏模拟、天体物理、等离子体物理等领域具有广泛的应用.因此设计高效精确的数值格式求解这一类方程至关重要.在数值格式的设计中,由于网格变形以及扩散系数的各向异性和间断性等因素,使得建立一般网格上满足保物理特性的数值格式一直是当前具有挑战性的一个重要课题.本论文主要针对这一课题展开,包括五部分的内容:(1)针对三维扩散问题单元中心型保正有限体积格式设计中的节点未知量插值消去方法——
为了利用不同量子系统的优点,科学家们提出了混合量子系统的概念。在各种混合系统中,腔自旋波混合系统受到了人们的广泛关注。一般情况下,腔自旋波混合系统由三维微波腔中的微波光子(腔模)和钇铁石榴石(YIG)样品中的自旋波量子(Kittel模)组成。由于自旋之间的海森堡交换作用,YIG材料内部的自旋系综可以同时拥有较高的自旋密度和较低的耗散率,这使得腔自旋波混合系统可以达到强耦合区,甚至超强耦合区。利用腔
计算流体力学对于航空航天、国防工程、汽车制造、生物科学等各个领域都起着重要的作用。其中对于爆轰及燃烧问题的研究,一直以来都是一个热点问题。常见的爆轰模型包括CJ模型与ZND模型两种。其中CJ模型由Chapman以及Jouguet分别提出,在该模型中,爆轰波阵面被看成一个伴随着化学反应的跳跃间断,分离了已燃介质和未燃介质,且化学反应瞬间完成达到热化学平衡。第二种是由Zeldovich、von Neu
关于孤立环境下的原子过程在过去几十年里已经开展了大量的理论和实验工作,然而在许多领域(如天体物理、激光等离子体、惯性约束聚变)中必须考虑等离子体环境效应的影响,目前理论上可以通过屏蔽势来考察这种环境效应对原子结构和动力学过程的影响。在过去的理论工作中,主要是采用Debye-Huckel势来描述弱耦合等离子体中带电粒子之间的相互作用,采用离子球势(不包含温度)描述强耦合等离子体中粒子之间的相互作用。
量子点是一种人工合成的特殊的材料,在其内部电子自旋会受到强烈的束缚,从而形成离散的轨道能级,与自然界中的原子十分类似。其内部的电子自旋具有良好的相干性,可以作为量子比特或者逻辑门,这在自旋电子学,量子信息和功能材料领域有非常广阔的应用前景。然而限制其实际应用的最大阻碍是电子自旋在环境的干扰下会快速地退相干,从而导致量子信息的丢失。因此寻找那些能在环境的干扰下保持相干性的电子自旋是十分重要的研究课题
激光间接驱动惯性约束聚变利用黑腔产生的X射线辐射源,驱动聚变靶丸内爆压缩氘(D)氚(T)燃料,实现中心点火。由于驱动激光器造价高昂,必须通过高温辐射源的烧蚀压和球形聚心收缩内爆,提高点火热斑的压力,以节省实现点火的驱动能量。但目前激光惯性约束聚变领域面临着内爆辐射驱动不对称和流体力学不稳定性两个科学问题的严重挑战。所以这两个问题的研究对于实现间接驱动惯性约束聚变的点火具有重要的物理意义和应用价值。
激光间接驱动惯性约束聚变利用黑腔产生高温高品质的X射线辐射源,以驱动聚变靶丸内爆压缩,实现中心点火,对可控核聚变等高能量密度物理研究具有基础物理意义。当前黑腔构型在驱动对称性、耦合效率及激光等离子体不稳定性等方面尚有提升空间。围绕高性能黑腔设计和黑腔辐射场表征,本论文开展黑腔构型设计及辐射流角分布研究,主要研究内容如下:1.联合研制三维视角因子程序IRAD3D;该程序集三维激光排布建模和物理仿真分
在经受辐照的材料中会有大量的缺陷形成并保留下来,不同类型的缺陷之间发生错综复杂的交互作用,最终会造成材料微观结构和宏观性能的变化。晶界是一种高效的点缺陷吸收阱,晶界-点缺陷交互作用与材料辐照肿胀的动力学密切相关,而且晶界对于提升材料的耐辐照性能作用显著,但是目前对于晶界-点缺陷交互作用问题的认识还需要进一步深入。本论文将围绕金属型核燃料的辐照效应问题,采用实验和理论模拟的方法,研究辐照环境下材料的