【摘 要】
:
随着智慧城市的发展,物联网技术在人们生活中的重要性也越发凸显,其中以智慧灯杆最具代表性。智慧灯杆作为智慧城市的重要节点,其功能早已不仅仅局限于照明等基础功能,所搭载的外接模块更是覆盖了日常生活的方方面面,数量上也呈爆炸式增长。传统的智慧灯杆控制器在管理外接模块时,多通过相应的硬件接口控制器实现固定的接口通信,这就导致外接模块的接入方式多样且固定,当采用其他通信协议的外接模块接入时,利用硬件接口则无
论文部分内容阅读
随着智慧城市的发展,物联网技术在人们生活中的重要性也越发凸显,其中以智慧灯杆最具代表性。智慧灯杆作为智慧城市的重要节点,其功能早已不仅仅局限于照明等基础功能,所搭载的外接模块更是覆盖了日常生活的方方面面,数量上也呈爆炸式增长。传统的智慧灯杆控制器在管理外接模块时,多通过相应的硬件接口控制器实现固定的接口通信,这就导致外接模块的接入方式多样且固定,当采用其他通信协议的外接模块接入时,利用硬件接口则无法实现通信。此外,目前智慧灯杆控制器的型号、规格多种多样,各自的硬件实现也各不相同,采用硬件接口控制器的方式会导致相应的代码只能在特定的控制器上运行,移植不够灵活,与智慧灯杆的快速发展不相符。因此,随着越来越多的外接模块接入智慧灯杆控制器,需要设计具有更加灵活接入方式的智慧灯杆控制器,以满足智慧灯杆产业的发展趋势。本课题针对目前智慧灯杆控制器的接入方式,对常用的嵌入式通信协议如IIC协议、SPI协议、UART协议、USB协议进行了详细的分析。通过虚拟化技术,设计并实现了智慧灯杆控制器自适应接口模块,在物理层面提供统一的接口,在逻辑层面实现多种协议的传输,实现了外接模块的灵活接入。此外,对自适应接口资源的定义进行了研究,设计并实现了自适应接口注册流程。基于网络传输实现了接口注册规则的下发并且实现了自适应接口在智慧灯杆控制器端的注册,并充分利用控制器本身的计算资源,在控制器重启等特殊状况下可自行实现接口注册。通过自适应接口模块,智慧灯杆控制器可更加灵活的管理外接模块的接入,同时自适应接口模块不受控制器硬件实现的限制,更有利于对智慧灯杆控制器的GPIO引脚的充分利用。
其他文献
图像分辨率是对图像质量好坏、清晰度高低进行评价的一个重要指标,在获取图像过程中,会由于众多客观因素的影响导致图像分辨率较低,例如:硬件仪器成像能力有限以及环境因素等。超分辨率图像重建算法旨在利用现有的低分辨率图像获得对应的高分辨率图像。如何提高图像可以传递的信息量进而获取高分辨率的图像以满足实际需要将具有重要研究价值和意义。本文对基于生成对抗网络的图像重建算法进行了改进,使得重建图像的内容充实、视
通信技术演进到第五代移动通信(the Fifth Generation of Mobile Communication,5G)时代,能够实现万物的互联互通,而V2X(Vehicle to Everything,车辆到一切事物)技术作为万物互联的接入点成为了目前研究的热点。本文主要对5G新空口车联网(New Radio Vehicle to Everything,NR-V2X)技术的直连链路(Sid
无人机(Unmanned Aerial Vehicle,UAV)搭载空中基站与传统的固定基站相比,具有制造成本低、操作灵活等优势。通过引入终端直通(Device-to-Device,D2D)技术,可以有效扩展无人机通信网络无线覆盖范围。然而,无人机的高移动性导致网络拓扑的频繁变化,因此对底层D2D网络带来了更严重的干扰。为了提升面向D2D用户的无人机网络性能,本文针对不同的网络模型,提出了联合优化
作为计算机视觉领域的重要研究分支,基于人脸检测和识别的身份验证技术近年来取得了长足的进步,在智慧城市、交通监管和安防监控等诸多领域实现了大规模商业化普及,为经济社会的稳定和发展提供了重要保障。然而在非限定性人员管控场景下,人脸的局部遮挡会造成图像原本的结构性特征丢失,大幅影响人脸识别精度。此外,随着智能终端设备的广泛应用和算力提升,基于移动端完成人员管控的需求大大增加,但当前主流的深度神经网络模型
近年来,伴随着互联网技术的快速发展,视频监控系统得到了越来越广泛的应用。在视频监控系统的运营过程中,视频不可避免会出现一些质量问题,比如模糊和偏色。这些问题会极大影响监控的有效性,因此视频图像质量的自动诊断变得越来越重要。在这个背景下,本文针对视频质量检测中图像模糊和偏色的问题进行研究,在研究的基础上设计并实现了一个视频质量检测系统。本文的主要研究内容如下:在图像模糊检测方面,针对运动模糊图像和失
在如今21世纪,无线通信已经与我们的社会发展与日常生活密不可分。而由于无线通信本身所具有的开放性的特点,我们周围的电磁环境是非常复杂且多变的,也因此对无线信号的识别技术一直是人们研究的热点问题。随着人工智能技术的兴起与高速发展,信号的识别识别技术也由原先需要依靠技术人员的专业能力来判断转变为由计算机自己完成对目标信号的识别,节省了大量人力,也极大的提高了识别速度与准确度。本文的主要工作及创新点如下
当前高动态车联场景面临着多普勒频偏扩展效应对通信系统的性能造成严重影响的问题,本文从多频段性能差异、车联业务需求差异和历史频偏数据辅助三个维度出发,提出了一种新型的联合多普勒频偏估计与补偿算法,有效地实现了多普勒频偏估计与补偿,提升通信链路的性能及可靠性,从而保障了高动态车联场景下所承载业务的有效进行。本文的主要贡献包括两部分:(1)建立了基于数据辅助的多普勒频偏联合估计与补偿方法。针对高动态车联
癫痫是由神经元异常放电而导致中枢神经系统功能短暂失常的脑部疾病,其发作的形式和强度复杂多样。约30%的癫痫患者在服用药物后发作症状未得到缓解,只能寄希望于手术切除癫痫灶以进行治疗。在术前评估时,发作起始区作为癫痫灶定位显著的标志,其定位精度决定着手术的治疗效果。因此,如何实现发作起始区的准确定位具有十分重要的研究意义。目前已有多项研究表明:癫痫发作起始区内、外的高频振荡信号具有一定差异,其可被用于
随着社会经济的不断发展,人才成为企业发展过程中不可或缺的因素。但是目前企业在招聘人才时如果只凭借自身经验判断进行招聘,就会出现招聘不到人才的情况。即使招聘到人才,用人单位如果不能规划和管理好人才让每个人在合适的职位上工作,就会使个人和企业的利益同时受损。不仅如此,目前很多高校毕业生不清楚自己的职业目标,也出现了找不到适合自己工作的现象。随着职业测评在国内外的发展,职业测评一方面可以帮助企业高效的找
随着微波光子学的发展,近些年,微波光子学的一个重要应用就是光载无线通信技术,通过将微波通信与光纤通信进行结合,使得微波在光纤中实现了低损耗传输。但是在微波光子链路当中,由于光纤色散的影响,经过调制的光信号在经过光纤传输之后,会产生周期性的功率衰落,使输出的RF信号在某些特定的频率点产生严重的凹陷,引起信号的失真,严重的影响了微波光子宽带移相系统的性能,因此如何抑制光纤中产生的色散是目前提升系统性能