论文部分内容阅读
有源相控阵天线具备扫描速度快、波束灵活捷变、抗干扰能力强、隐身性能好等无可比拟的优势,已广泛应用于地面防御、机载火控、弹载制导、星载成像等众多领域。天线在不同载体平台服役时,环境载荷会严重影响天线的电性能,包括其辐射性能和散射性能,且随着有源相控阵天线向高频段、高性能、集成化等方向发展,服役环境载荷的影响将更为突出。由于服役环境对天线电性能影响机理复杂,难以给出有效的补偿方法来保障天线可靠服役。为此,本文对典型服役环境下有源相控阵天线的机电耦合影响关系和电性能补偿方法进行了研究,主要工作如下:1.大口径陆基有源相控阵天线在太阳照射(阴阳面温度梯度)、风荷等影响下会产生结构变形,恶化天线辐射性能。基于有源相控阵天线的结构-电磁耦合模型,分析结构变形对天线辐射性能的定量影响。在此基础上,分别通过调整天线阵元激励相位和激励电流幅相两种方法对变形天线辐射性能进行了补偿。其中,针对幅相补偿分别提出了基于结构-电磁耦合模型与最小平方误差的幅相补偿,以及基于结构-电磁耦合模型与FFT的幅相补偿。相比于传统的相位补偿方法,提出的幅相补偿方法不仅可以保障天线主瓣区域性能,还可对整个观察区域内天线的辐射性能进行补偿。其中,基于最小平方误差的幅相补偿对辐射性能补偿效果最优,基于FFT的幅相补偿可在改善天线辐射性能的同时快速计算调整量。最后,在X频段有源相控阵天线实验平台上,对服役环境下多种典型变形工况进行了电性能测试与补偿,验证了所提两种幅相补偿方法的有效性,为保障结构变形下有源相控阵天线的可靠服役提供了理论基础。2.机载有源相控阵天线载体平台空间有限、电子器件安装密度高,阵面高热功耗导致的高温工作环境是其面临的严峻问题之一。在高温影响下,T/R组件性能温漂会导致输出的激励电流产生幅相误差;同时,对于为T/R组件供电的阵面电源来说,其输出直流电压中存在的交流分量,即电源纹波,也会通过幅度调制和相位调制使T/R组件输出激励电流上产生幅相误差,且随着温度的升高,电源纹波的影响更为严重。因此,深入分析了温度影响下,阵面电源纹波和T/R组件性能温漂对天线辐射性能的影响机理,给出了表征电源纹波大小的纹波系数计算模型、T/R组件温漂曲线等。基于此,建立了高热功耗下阵面电源纹波系数、T/R组件激励幅相误差与天线辐射性能的耦合模型,定量分析了不同温度分布下馈电误差对辐射性能的影响规律,并给出了对应的激励电流幅相调整量,通过电子补偿方法降低了高热功耗对天线辐射性能的影响。以上工作也可从天线电性能角度出发,为天线的散热设计提供设计指标。3.振动载荷会导致机载有源相控阵天线发生结构变形,阵元位置偏移会使天线的辐射性能降低,而散射性能提升。考虑到机载天线需同时具备良好的探测跟踪能力及隐身性能,即天线的辐射性能和散射性能应同时满足要求。因此,综合考虑了结构变形对天线辐射性能和散射性能的影响,首先,建立了包含随机位置误差的天线散射性能统计模型,推导了天线散射性能指标均值与随机位置误差之间的数学关系。同时,结合已有的天线辐射性能统计模型,分析了不同方向上随机结构误差对天线辐射和散射性能的影响,确定了天线子阵级结构补偿时子阵结构的调整方向。最后,结合遗传算法实现了天线辐射性能和散射性能的综合补偿。这为同时保障有源相控阵天线的高辐射性能和高隐身性能提供了理论参考。4.针对超声速、高超声速飞行的弹载有源相控阵天线,高温烧蚀严重恶化天线的辐射性能。首先分析了飞行过程中天线罩的高温烧蚀过程,高温烧蚀下天线罩的温度场分布和烧蚀厚度变化;同时,天线罩的剧烈温升也会通过热传导和热辐射使罩内天线温度升高,导致天线馈电误差。基于此,建立了高温烧蚀下天线罩厚度和物性参数变化、天线阵元馈电误差和弹载天线辐射性能之间的机电耦合模型,定量分析了高温烧蚀对弹载天线辐射性能的影响。并进一步提出了通过调整天线罩内阵元激励电流的方式来补偿高温烧蚀的影响,其中,给出了两种激励电流幅相调整量计算方法,可在多频点、多扫描角下补偿高温烧蚀对弹载天线辐射性能的影响。最后,开发了高温烧蚀下弹载天线电性能分析与补偿量计算软件。以上工作在不改变天线罩结构设计的基础上,降低了高温烧蚀对弹载有源相控阵天线制导精度、抗干扰能力等方面的影响。5.太空热环境是导致星载有源相控阵天线阵面热变形的主要原因。受限于星载平台的空间和载重要求,天线变形位移难以直接测量。而应变传感器体积小、便于安装、可靠性高、能够克服载体平台限制,实现了对结构变形信息的实时采集。因此,分析了结构应变与天线辐射性能之间的影响机理,建立了有源相控阵天线应变-电磁耦合模型。进一步,提出了基于应变-电磁耦合模型的相位补偿和幅相补偿,用于降低太空热环境对天线辐射性能影响。最后,在有源相控阵天线实验平台上,搭建了阵面变形应变信息测量系统,通过实验验证了应变-电磁耦合模型和补偿方法的有效性,同时,开发了基于应变的天线辐射性能和补偿量计算软件。本章工作为太空热环境下星载有源相控阵天线的实时补偿提供了理论基础。