新型肝素酶高产菌的筛选鉴定及其基因的克隆与表达

来源 :深圳大学 | 被引量 : 0次 | 上传用户:king4978
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
肝素是一类高度硫酸化的线性糖胺聚糖,具有抗凝血、抗血栓、抗病毒、抗炎症及抗肿瘤等作用,但研究表明,在肝素应用的过程中常伴随着很多不同的副作用,例如肝素诱导性血小板减少、过敏反应等。相对来说,由普通肝素通过裂解得到的相对分子量较低的低分子量肝素和超低分子量肝素不仅具有更高的抗凝血活性,并且副作用更小,因此其研究与制备受到越来越多的关注。目前来说,低分子量肝素类产品主要是通过化学方法制备,该法处理效果过于激烈容易导致肝素结构发生改变,失去生物活性。相比之下,肝素酶裂解法反应条件温和,不影响肝素本身的结构特征,产物得率较高;反应一步完成,且几乎不产生杂质,比较利于下游的分离纯化。因此,肝素类药物的酶法生产研究具有重要的工业化应用前景。肝素酶是一类能够专一性地裂解肝素和硫酸类肝素糖苷键的蛋白质。肝素酶裂解法生产肝素类药物需要解决的关键问题是肝素酶来源狭隘以及酶制备成本高。因此,筛选高产肝素酶的新型微生物以及构建高效表达可溶性肝素酶体系就显得尤为重要。本课题正是基于以上问题,从自然界土壤中分离出产肝素酶的新型微生物——拉乌尔菌Raoultella sp.NX-TZ-3-15并对其发酵条件进行优化研究,对该菌的全基因组测序结果进行分析,得到新型肝素酶的基因序列H1(684 bp)和H2(699 bp),利用无缝克隆和组装技术直接克隆该新型肝素酶,构建重组质粒导入大肠杆菌,高效表达可溶性肝素酶。本论文主要结果如下:(1)本课题通过对屠宰场附件的土壤进行筛选,得到了一株肝素酶高产菌,并且通过形态观察、对菌株的16S rDNA扩增产物进行测序和BLAST同源性比较,确定该菌株属于拉乌尔菌属(Raoultella sp.),并将该菌命名为Raoultella sp.NX-TZ-3-15。(2)以Raoultella sp.NX-TZ-3-15为出发菌株,对影响该菌株生长和代谢的发酵培养基成分和培养条件进行了研究,得到了最优的发酵培养基——1%麦芽糖,1%大豆蛋白胨,0.25%KH2PO4,0.025%MgSO4·7H2O,0.2%肝素钠;以及最优培养条件——初始pH 9.5,10%接种量,37℃,200 rpm,24 h。(3)将Raoultella sp.NX-TZ-3-15进行全基因组测序,利用生物信息学技术对测序结果进行分析,得到新型肝素酶的基因序列H1和H2。以Raoultella sp.NX-TZ-3-15 DNA为PCR模板获得目的基因H1和H2,再通过无缝克隆与组装技术成功与质粒pBENT构建出重组质粒pBENT-H1和pBENT-H2,并转入大肠杆菌感受态细胞E.coli BLR(DE3)。通过菌落PCR,重组质粒单酶切以及测序等方法对重组工程菌进行验证,结果表明克隆成功。(4)重组工程菌诱导表达结果表明:E.coli BLR(DE3)pBENT-H1和E.coli BLR(DE3)pBENT-H2两株重组工程菌表达的目的蛋白主要在上清液中,均可溶,蛋白分子量大小为25 kDa。E.coli BLR(DE3)pBENT-H1的酶活为1650 U/L,是原菌酶活的4.34倍,但E.coli BLR(DE3)pBENT-H2几乎没有肝素酶活性,在后续研究中,选择E.coli BLR(DE3)pBENT-H1作为进一步的研究对象。(5)E.coli BLR(DE3)pBENT-H1的诱导条件优化研究结果表明,其诱导和表达肝素酶的最优条件为:在37℃,200 rpm条件下培养3.5 h至菌液OD600为0.7左右时,加入IPTG(100 mM)至终浓度为0.25 mM,30℃,200 rpm诱导8 h,肝素酶酶活最高可达2140 U/L。
其他文献
川牛膝是重要的川产道地大宗药材,市场上种质资源混杂,严重影响临床用药安全。本实验运用组织切片法和显微电镜观察法,鉴定正品川牛膝“宝膝1号”与伪品麻牛膝植株组织形态,
云计算具有强大的计算能力和存储空间,其依靠资源共享为企业和用户提供方便灵活的服务,并以最低的成本实现利益的最大化。虽然云存储给数据存储和使用带来方便,但存储在云服
近年来,禽白血病病毒J亚群(ALV-J)在全球范围内的爆发引发了大规模的禽类死亡,给禽类的养殖业发展带来巨大的经济损失。目前,还没有针对ALV-J的有效疫苗和治疗药物,因此,寻找简单、高效且灵敏度高的方法检测ALV-J变得至关重要。免疫传感分析是将免疫检测与合适的传感器相结合的一种检测技术,具有灵敏度高、响应速度快、简单易操作等优点,为禽白血病病毒的检测提供了有效的检测手段。在免疫传感器的构建中,
微流体运输技术在医疗、化学分析、生物工程等领域的应用广阔,发展迅速,同时对研究新型微流体转运技术也提出了更高的要求。蜜蜂作为典型的膜翅目访花昆虫,具有特殊的口器结构,可以高效的摄取粘性花蜜和其他高浓度溶液。蜜蜂口器以及摄蜜机理的研究,对微流体运输技术的研究提供新的思路,因此受到学者的广泛关注。前期的研究表明,短吻和长吻蜜蜂都可以通过口器结构的周期性伸缩变形,实现花蜜的输运。本文通过研究蜜蜂的摄蜜过
多光子成像是一种重要的成像技术,以其对生物体无损伤、穿透深度大等特点广泛应用于对活体生物样品的观察。在波长选择方面,用1700-nm波段作为激发光的多光子成像可以减少生
乳酸菌作为益生菌,广泛存在于自然环境和人体肠道内,具有多种益生功能,同时其在生长过程中代谢产生的胞外多糖(Exopolysaccharide,EPS)表现出独特的物理化学特性和生物学活性,使乳酸菌EPS成为研究者们关注的热点。本研究从传统四川泡菜中筛选出一株高产EPS的乳酸菌,并对其进行种属鉴定和产生的EPS的结构表征分析、体外抗氧化性和降血糖潜力等研究,其主要结果如下:(1)运用产粘菌落法和产多
链接预测是根据网络中已知的结构,对其中缺失的链接进行预测。链接预测作为网络数据分析的重要研究内容,在探究网络演化规律、数据补齐等方面有重要的研究意义,在推荐系统、生物信息和科研合作等领域也有重要的应用价值。从监督学习的角度,链接预测可看做二分类问题。其中,以节点对为样本,存在链接的节点对为正例,不存在链接的节点对为负例,通过构造链接预测分类器解决链接预测问题。由于网络的大规模性和不确定性,其中大量
自噬是恶性肿瘤的潜在治疗靶点。磷脂酶C gamma1(PLCγ1)在肿瘤的发生发展中起着重要的作用。我们前期研究证实PLCγ1参与调控结肠癌与肝癌细胞的自噬,但是,其在肺腺癌中能否
当今互联网络的功能已经逐渐从信息传递转变为内容分发,而传统的以主机为中心的TCP/IP网络架构难以应对这种变化,因此研究者们提出了一种以内容为中心的未来网络潜在架构——命名数据网络(Named Data Networking,NDN)。泛化的缓存系统是NDN网络的典型特征之一,这一方面提高了内容传输的效率,另一方面也带来了缓存一致性的问题。保证缓存一致性,就是保证用户在任意缓存节点中获取的内容副本
本文考虑多孔介质中不可压缩、可混溶驱动问题。我们研究由压力p和浓度c耦合的方程:(?)我们考虑了适当的Robin边界条件,分别进行压力和浓度的半离散Galerkin有限元格式的收敛性分析。上述问题中的Robin边界条件表示非封闭边界,相当于实际应用中油藏区域外的水(边底水)通过边界流入,对于实际的油藏模拟应用有一定的理论意义和应用价值。本文在上述压力与浓度耦合的偏微分方程组的前提下,设定第三类边界